精英家教网 > 高中数学 > 题目详情
如图,平面α⊥平面β,α∩β=l,DA?α,BC?α,且DA⊥l于A,BC⊥l于B,AD=4,BC=8,AB=6,点P是平面β内不在l上的一动点,记PD与平面β所成角为θ1,PC与平面β所成角为θ2.若θ12,则△PAB的面积的最大值是
12
12
分析:由题设条件知两个直角三角形△PAD与△PBC是相似的直角三角形,根据题设条件可得出PB=2PA,作PM⊥AB,垂足为M,令AM=t,将三角形的面积用t表示出来,再研究面积的最值选出正确选项
解答:解:由题意平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,
∴△PAD与△PBC是直角三角形,又∠ADP=∠BCP,
∴△PAD∽△PBC,又AD=4,BC=8,
∴PB=2PA
作PM⊥AB,垂足为M,令AM=t,
在两个Rt△PAM与Rt△PBM中,AM是公共边及PB=2PA
∴PA2-t2=4PA2-(6-t)2PA2-t2=4PA2-(6-t)2
解得PA2=12-4t
∴PM=
12-4t-t2

∴S=
1
2
×AB×PM=
1
2
×6×
12-4t-t2
=3
16-(t-2)2
≤12.
即三角形面积的最大值为12
故答案为:12.
点评:本题考查与二面角有关的立体几何综合题,解答本题,关键是将由题设条件得出三角形的性质:两邻边的值有2倍的关系,第三边长度为6,引入一个变量,将面积表示成此变量的函数,从而利用函数的最值来研究面积的最值,本题考查了函数最值的思想,转化的思想,数形结合的思想,本题解题过程中将几何问题转化为代数问题求解是几何问题中求最值的常规思想,在近几年的高考中此类题多有出现,本题易因为没有能建立起面积的函数而导致解题失败
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知等腰△ABC的底边BC=3,顶角为120°,D是BC边上一点,且BD=1.把△ADC沿AD折起,使得平面CAD⊥平面ABD,连接BC形成三棱锥C-ABD.
(Ⅰ) ①求证:AC⊥平面ABD;②求三棱锥C-ABD的体积;
(Ⅱ) 求AC与平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平面α⊥平面β,A∈α,B∈β,AB与平面α、β所成的角分别为
π
4
π
6
,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=12,求A′B′的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1)直线l∥AB,且与CA,CB分别相交于点E,F,EF与AB间的距离是d,点P是线段EF上任意一点,Q是线段AB上任意一点,则|PQ|的最小值等于d.类比上述结论我们可以得到:在图(2)中,平面α∥平面ABC,且与DA,DB,DC分别相交于点E,F,G,平面α与平面ABC间的距离是m,
a,b分别是平面α与平面ABC内的任意一条直线,则a,b间距离的最小值是m.
或P,Q分别是平面α与平面ABC内的任意一点,则P,Q间距离的最小值是m.
a,b分别是平面α与平面ABC内的任意一条直线,则a,b间距离的最小值是m.
或P,Q分别是平面α与平面ABC内的任意一点,则P,Q间距离的最小值是m.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)如图1,在梯形ABCD中,BC∥DA,BE⊥DA,EA=EB=BC=2,DE=1,将四边形DEBC沿BE折起,使平面DEBC垂直平面ABE,如图2,连结AD,AC.设M是AB上的动点.
(Ⅰ)若M为AB中点,求证:ME∥平面ADC;
(Ⅱ)若AM=
13
AB
,求三棱锥M-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,平面平面,点EFO分别为线段PAPBAC的中点,点G是线段CO的中点,

求证:   (Ⅰ)平面

(Ⅱ)∥平面

查看答案和解析>>

同步练习册答案