精英家教网 > 高中数学 > 题目详情

【题目】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,∠BAC=60°,在A地听到弹射声音的时间比在B地晚秒. A地测得该仪器弹至最高点H时的仰角为30°.

(1)求A、C两地的距离;

(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)

【答案】(1)420m;(2)140.

【解析】分析:(1)设由题意已知两边及一角用余弦定理列出关于的方程式求解。

(2)在直角三角形中,由(1)解出,可得的值。

详解:(1)由题意,设ACx

BCx340=x-40.

在△ABC中,由余弦定理,得

BC2BA2AC2-2BAACcos∠BAC

即(x-40)2=10 000+x2-100x,解得x=420.

∴A、C两地间的距离为420m.

(2)在Rt△ACH中,AC=420,∠CAH=30°,

所以CHACtan∠CAH=140.

答: 该仪器的垂直弹射高度CH为140米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知平面为矩形,分别为的中点,.

(1)求证:平面

(2)求证:面平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于有表格中的数据线性相关由最小二乘法得.

2

4

5

6

8

30

40

60

50

70

(1)求的线性回归方程

(2)现有第二个线性模型:,且.若与(1)的线性模型比较,哪一个线性模型拟合效果比较好,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,

(1)把全程运输成本()表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;

(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(12分)
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1 , 1),P2(x2 , 2)…Pn+1(xn+1 , n+1)得到折线P1 P2…Pn+1 , 求由该折线与直线y=0,x=x1 , x=xn+1所围成的区域的面积Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆

⑴若圆的半径为2,圆 轴相切且与圆外切,求圆的标准方程;

⑵若过原点的直线与圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中“竹九节”问题曰:“今有竹九节,下三节容量四升,上四节容量三升,问中间两节欲均容各多少?”其意为:“现有一根9节的竹子,自上而下的容积成等差数列,下面3节容量为4升,上面4节容积为3升,问中间2节各多少容积?”则中间2节容积合计________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是方程的两根,数列是递增的等差数列,数列的前项和为,且.

1)求数列的通项公式;

2)记,求数列的前.

查看答案和解析>>

同步练习册答案