精英家教网 > 高中数学 > 题目详情

【题目】已知三棱柱ABC﹣A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E、F分别在棱AA′,CC′上,且AE=C′F=2.
(1)求证:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一点M,使得C′M∥平面BEF,若存在,求 值,若不存在,说明理由;
(3)求棱锥A′﹣BEF的体积.

【答案】
(1)证明:取BC中点O,连接AO,因为三角形ABC是等边三角形,所以AO⊥BC,

又因为平面BCC′B′⊥底面ABC,AO平面ABC,平面BCC′B′∩平面ABC=BC,

所以AO⊥平面BCC′B′,

又BB′平面BCC′B,所以AO⊥BB′.

又BB′⊥AC,AO∩AC=A,AO平面ABC,AC平面ABC.

所以BB′⊥底面ABC


(2)解:显然M不是A′,B′,棱A′B′上若存在一点M,使得C′M∥平面BEF,

过M作MN∥AA′交BE于N,连接FN,MC′,所以MN∥CF,即C′M和FN共面,

所以C′M∥FN,

所以四边形C′MNF为平行四边形,所以MN=2,

所以MN是梯形A′B′BE的中位线,M为A′B′的中点.即


(3)解:
【解析】(1)取BC中点O,先证AO⊥BC,再由面面垂直的性质定理证得AO⊥面BCC'B',再由线面垂直的判定定理即可得证;(2)显然M不是A′,B′,棱A′B′上若存在一点M,使得C′M∥平面BEF,可通过线面平行的判断定理,即可证得;(3)利用等体积转化,即可求棱锥A′﹣BEF的体积.
【考点精析】根据题目的已知条件,利用直线与平面平行的判定的相关知识可以得到问题的答案,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求实数a的范围,使y=f(x)在区间[﹣5,5]上是单调函数.
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax﹣3
(1)若函数在f(x)的单调递减区间(﹣∞,2],求函数f(x)在区间[3,5]上的最大值.
(2)若函数在f(x)在单区间(﹣∞,2]上是单调递减,求函数f(1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是R上的奇函数,且当x∈[0,+∞)时, . (Ⅰ)求f(x)的解析式;
(Ⅱ)运用函数单调性定义证明f(x)在定义域R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域为A,函数y=log2(a﹣x)的定义域为B.
(1)若AB,求实数a的取值范围;
(2)设全集为R,若非空集合(RB)∩A的元素中有且只有一个是整数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

1)若圆轴相切,求圆的方程;

2)求圆心的轨迹方程;

3)已知,圆轴相交于两点(点在点的左侧).过点任作一条直线与圆 相交于两点问:是否存在实数,使得若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,前项和.

(1)求的取值范围;

(2)设,记的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数y= 的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:

每件A产品

每件B产品

研制成本、搭载试验费用之和(万元)

20

30

产品重量(千克)

10

5

预计收益(万元)

80

60

已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是

查看答案和解析>>

同步练习册答案