精英家教网 > 高中数学 > 题目详情
9.若a<b<0,那么下列不等式成立的是(  )
A.ab<b2B.a2<b2C.lg(-ab)<lg(-a2D.2${\;}^{\frac{1}{b}}$<2${\;}^{\frac{1}{a}}$

分析 根据题意,对选项中的命题判断正误即可.

解答 解:a<b<0时,ab>b2,∴A错误;
a2>ab>b2,∴B错误;
-ab<0,负数没有对数,∴C错误;
由题意$\frac{1}{b}$<$\frac{1}{a}$,∴${2}^{\frac{1}{b}}$<${2}^{\frac{1}{a}}$,∴D正确.
故选:D.

点评 本题考查了不等式的性质与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知O为平面直角坐标系的原点,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过双曲线左顶点A,做两渐近线的平行线分别与y轴交于C、D两点,B为双曲线的右顶点,若以O为圆心,|OF2|为直径的圆是四边形ACBD的内切圆,则装曲线的离心率为,(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C经过点A(0,3)和B(3,2)且圆心C在直线y=x上.
(1)求圆C的方程;
(2)求倾斜角为45°且与圆C相切的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对任意两个非零的平面向量$\overrightarrow{α}$和$\overrightarrow{β}$,定义$\overrightarrow{α}$○$\overrightarrow{β}$=$\frac{\overrightarrow{α}•\overrightarrow{β}}{\overrightarrow{β}•\overrightarrow{β}}$,若两个非零的平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ∈($\frac{π}{6}$,$\frac{π}{2}$),且$\overrightarrow{a}$○$\overrightarrow{b}$与$\overrightarrow{b}$○$\overrightarrow{a}$都在集合{$\frac{n}{2}$|n∈Z}中,则$\overrightarrow{a}$○$\overrightarrow{b}$=(  )
A.$\frac{5}{2}$或$\frac{3}{2}$B.$\frac{3}{2}$或1C.1或$\frac{1}{2}$D.$\frac{1}{2}$或$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义域在R上的函数f(x)满足f(x+2)f(x)=1,当x∈[-1,1)时,f(x)=log2(4-x),则f(2016)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在四面体S-ABC中,SA⊥平面ABC,∠ABC=90°,SA=AC=2,AB=1,则该四面体的外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数$\frac{2+i}{a-i}$(其中a∈R,i为虚数单位)是纯虚数,则a+i的模为(  )
A.$\frac{5}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥最长的棱长等于(  )
A.$4\sqrt{2}$B.$\sqrt{34}$C.$\sqrt{41}$D.$5\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex(sinx-cosx)(0≤x≤2016π),则函数f(x)的各极大值之和为(  )
A.$\frac{{{e^π}(1-{e^{2017π}})}}{{1-{e^{2π}}}}$B.$\frac{{{e^π}(1-{e^{1009π}})}}{{1-{e^π}}}$
C.$\frac{{{e^π}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$D.$\frac{{{e^π}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$

查看答案和解析>>

同步练习册答案