精英家教网 > 高中数学 > 题目详情

设集合A={x|x2+3k2≥2k(2x-1)},B={x|x2-(2x-1)kk2≥0},且AB,试求k的取值范围.


解析:

解:,比较

因为

(1)当k>1时,3k-1>k+1,A={x|x≥3k-1或x}.

(2)当k=1时,x.

(3)当k<1时,3k-1<k+1,A=.

B中的不等式不能分解因式,故考虑判断式

(1)当k=0时,.

(2)当k>0时,△<0,x.

(3)当k<0时,.

故:当时,由B=R,显然有A

当k<0时,为使A,需要k,于是k时,.

综上所述,k的取值范围是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x2=1},B={x|x是不大于3的自然数},A⊆C,B⊆C,则集合C中元素最少有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+2x-a=0,x∈R},若A是非空集合,则实数a的取值范围是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区一模)设集合A={x|x2>x},集合B={x|x>0},则集合A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2<2x},B={x|log2x>0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+2x-3>0},B={x|x<3},则A∩B=(  )

查看答案和解析>>

同步练习册答案