精英家教网 > 高中数学 > 题目详情
以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是(  )
A.(0,2)B.(2,0)C.(4,0)D.(0,4)
B
x+2=0为抛物线的准线,根据抛物线的定义,圆心到准线的距离等于圆心到焦点的距离,故这些圆恒过定点(2,0).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个动圆与定圆相内切,且与定直线相切,则此动圆的圆心的轨迹方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若线段AB的长为8,则p=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线4kx-4y-k=0与抛物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于(  )
A.      B.2          C.      D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:的焦点为,是C上一点,,则(   )
A. 1B. 2C. 4D. 8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方形和正方形的边长分别为,原点的中点,抛物线经过两点,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·江西高考]抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为
,则(   )
A.   B.  C.   D.

查看答案和解析>>

同步练习册答案