【题目】已知双曲线C:(a>0,b>0)的渐近线方程为y=±x,O为坐标原点,点在双曲线上.
(I)求双曲线C的方程.
(II)若斜率为1的直线l与双曲线交于P,Q两点,且=0,求直线l方程.
【答案】(I);(II).
【解析】
(I)根据题干可得到双曲线的方程可设为3x2﹣y2=3a2,代入点M可得到a值;(II)设直线PQ的方程为y=x+m,联立此直线和双曲线方程,得到两根的和与乘积,由=0得x1x2+y1y2=0,代入韦达定理可得到结果.
(I)双曲线C的渐近线方程为,
∴,双曲线的方程可设为3x2﹣y2=3a2.
∵点M(,)在双曲线上,可解得a=2,∴双曲线C的方程为.
(II)设直线PQ的方程为y=x+m,点P(x1,y1),Q(x2,y2),
将直线PQ的方程代入双曲线C的方程,
可化为2x2﹣2mx﹣m2﹣12=0,
x1+x2=m,x1x2=,
由=0得x1x2+y1y2=0,把y1=x1+m,y2=x2+m代入上式可得2x1x2+m(x1+x2)+m2=0,∴,
化简得m2=12.直线方程或.
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若的坐标为,求的值;
(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在抛物线上,过点作垂直于轴,垂足为,设.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)若点是上的动点,过点作抛物线:的两条切线,切点分别为,设点到直线的距离为,求的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱ABC﹣A1B1C1的侧面AA1C1C是菱形,侧面ABB1A1⊥侧面AA1C1C,A1B=AB=AA1=2,△AA1C1的面积为 ,且∠AA1C1为锐角.
(I) 求证:AA1⊥BC1;
(Ⅱ)求锐二面角B﹣AC﹣C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别如下图所示。
甲 | 0 | 1 | 0 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 2 | 3 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 1 |
从数据上看, ________________机床的性能较好(填“甲”或者“乙”).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC= AB= ,平面PBC⊥平面ABCD.
(1)求证:AC⊥PB;
(2)若PB=PC= ,问在侧棱PB上是否存在一点M,使得二面角M﹣AD﹣B的余弦值为 ?若存在,求出 的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com