精英家教网 > 高中数学 > 题目详情

【题目】方程x2+x10的解可视为函数yx+的图象与函数y的图象交点的横坐标,若x4+ax40的各个实根x1x2xk(k≤4)所对应的点(xi ,)i1,2,…,k)均在直线yx的同侧,则实数a的取值范围是      .

【答案】

【解析】

原方程等价于,分别作出左右两边函数的图象:分讨论,可得答案.

方程的根显然,原方程等价于,原方程的实根是曲线与曲线的交点的横坐标;而曲线是由曲线向上或向下平移个单位而得到的,若交点(xi ,)i1,2,…,k)均在直线yx的同侧,因直线yx交点为:;所以结合图象可得:

,则.


华罗庚曾说过:“数缺形时少直观,形缺数时难入微.数形结合百般好,隔离分家万事非.”数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体为矩形.

1)证明:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;

(2)令,由散点图判断哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)

(3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,且与双曲线有相同焦点.

1)求椭圆标准方程;

2)过点的直线与椭圆交于两点,原点在以为直径的圆上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点分别为椭圆的右顶点,上顶点和右焦点,且

1)求椭圆的方程;

2是椭圆上的两个动点,若直线与直线的斜率之和为,证明,直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】16届亚运会在中国广州进行,为了搞好接待工作,组委会招幕了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余人不喜爱运动.

1)根据以上数据完成以下列联表:

喜爱运动

不喜爱运动

总计

总计

2)根据列联表的独立性检验,能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全国人大第二次会议于201935日在北京开幕.为广泛了解民意,某人大代表利用网站进行民意调查.数据调查显示,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与调查者中随机选出200人,并将这200人按年龄分组,第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

(1)求

(2)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,并再从这5人中随机抽取2人接受现场访谈,求这两人恰好属于不同组别的概率;

(3)把年龄在第123组的居民称为青少年组,年龄在第45组的居民称为中老年组,若选出的200人中不关注民生问题的中老年人有10人,问是否有的把握认为是否关注民生与年龄有关?

附:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与平面直角坐标系的原点重合,极轴与轴的正半轴重合,直线的参数方程为是参数),曲线的极坐标方程为

1)求直线的普通方程与曲线的直角坐标方程;

2)设直线与曲线交于两点,点为曲线上一点,求使面积取得最大值时的点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且上满足恒成立.

1)求实数的值;

2)令上的最小值为,求证:.

查看答案和解析>>

同步练习册答案