【题目】方程x2+x-1=0的解可视为函数y=x+的图象与函数y=的图象交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk(k≤4)所对应的点(xi ,)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 .
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;
(2)令,由散点图判断与哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)
(3)若一年按天计算,试估计收费标准为多少时,年销售额
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点,,分别为椭圆的右顶点,上顶点和右焦点,且.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,若直线与直线的斜率之和为,证明,直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第16届亚运会在中国广州进行,为了搞好接待工作,组委会招幕了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成以下列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | |||
女 | |||
总计 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第十三届全国人大第二次会议于2019年3月5日在北京开幕.为广泛了解民意,某人大代表利用网站进行民意调查.数据调查显示,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与调查者中随机选出200人,并将这200人按年龄分组,第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求;
(2)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,并再从这5人中随机抽取2人接受现场访谈,求这两人恰好属于不同组别的概率;
(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的中老年人有10人,问是否有的把握认为是否关注民生与年龄有关?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点与平面直角坐标系的原点重合,极轴与轴的正半轴重合,直线的参数方程为(是参数),曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)设直线与曲线交于,两点,点为曲线上一点,求使面积取得最大值时的点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com