精英家教网 > 高中数学 > 题目详情
已知在矩形ABCD中,AB=5,BC=7,在其中任取一点P,使满足∠APB>90°,则P点出现的概率为
56
56
分析:在矩形ABCD内以AB为直径作半圆,如图所示.由直径所对的圆周角为直角,可得当点P位于半圆内部满足∠APB>90°.因此,算出半圆的面积和矩形ABCD的面积,利用几何概型公式加以计算,即可得到P点出现的概率.
解答:解:在矩形ABCD内,以AB为直径作半圆,如图所示.
∵P点在半圆上时,∠APB=90°,
∴当点P位于半圆内部满足∠APB>90°.
∵矩形ABCD中,AB=5,BC=7,∴矩形ABCD的面积S=AB×BC=35.
又∵半圆的面积S'=
1
2
×π×(
AB
2
2=
25π
8

∴点P出现的概率为P=
S′
S
=
25π
8
35
=
56

故答案为:
56
点评:本题给出矩形ABCD,求矩形内部一点P满足∠APB>90°的概率.着重考查了半圆、矩形的面积公式和几何概型计算公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示精英家教网,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(II)当BC边上有且仅有一个点Q使得PQ⊥OD时,求二面角Q-PD-A的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知在矩形ABCD中,
AD
=4
3
,设
AB
=a,
BC
=b,
BD
=c
,试求|
a
+
b
+
c
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在矩形ABCD中,AB=2,BC=3,则
AB
+
BC
+
AC
的模等于(  )
A、4
B、5
C、
13
D、2
13

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

同步练习册答案