【题目】某个地区计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水的年入流量(年入流量:一年内上游来水与库区降水之和,单位:十亿立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超过12的年份有35年,超过12的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量与其蕴含的能量(单位:百亿万焦)之间的部分对应数据为如下表所示:
年入流量 | 6 | 8 | 10 | 12 | 14 |
蕴含的能量 | 1.5 | 2.5 | 3.5 | 5 | 7.5 |
用最小二乘法求出关于的线性回归方程;(回归方程系数用分数表示)
(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:,.
【答案】(1)(2)(3)欲使水电站年总利润的均值达到最大,应安装发电机2台.
【解析】
(1)计算得到,,,再计算概率得到答案.
(2)利用回归方程公式直接计算得到答案.
(3)计算概率得到分布列,再计算数学期望得到答案.
(1)依题意,,,
.
由二项分布得,在未来4年中至多有1年的年入流量超过12的概率为.
(2),,,,,,
所以关于的线性回归方程为.
(3)记水电站年总利润为(单位:万元).
①安装1台发电机的情形.
由于水库年入流量总大于4,故一台发电机运行的概率为1,对应的年利润,
.
②安装2台发电机的情形.
依题意,当时,一台发电机运行,此时,
因此;
当时,两台发电机运行,此时,
因此.由此得的分布列如下:
4200 | 10000 | |
0.2 | 0.8 |
所以,.
③安装3台发电机的情形.
依题意,当时,一台发电机运行,此时,
因此;
当时,两台发电机运行,此时,
因此;
当时,三台发电机运行,此时,
因此.由此得的分布列如下:
3400 | 9200 | 15000 | |
0.2 | 0.7 | 0.1 |
所以,.
综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.
科目:高中数学 来源: 题型:
【题目】某企业生产的产品具有60个月的时效性,在时效期内,企业投入50万元经销该产品,为了获得更多的利润,企业将每月获得利润的10%再投入到次月的经营中,市场调研表明,该企业在经销这个产品的第个月的利润是(单位:万元),记第个月的当月利润率为,例.
(1)求第个月的当月利润率;
(2)求该企业在经销此产品期间,哪一个月的当月利润率最大,并求出该月的当月利润率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设两点在抛物线上,是AB的垂直平分线,
(1)当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论;
(2)若,弦AB是否过定点,若过定点,求出该定点,若不过定点,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种质地均匀的正四面体玩具的4个面上分别标有数字0,1,2,3,将这个玩具抛掷次,记第次抛掷后玩具与桌面接触的面上所标的数字为,数列的前和为.记是3的倍数的概率为.
(1)求,;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.
(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的右焦点为,且短轴长为,离心率为.
(1)求椭圆的标准方程;
(2)设点为椭圆与轴正半轴的交点,是否存在直线,使得交椭圆于两点,且恰是的垂心?若存在,求的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,,,且满足.记点的轨迹为曲线.
(1)求的方程,并说明是什么曲线;
(2)若,是曲线上的动点,且直线过点,问在轴上是否存在定点,使得?若存在,请求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望;
(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在南北方向有一条公路,一半径为100的圆形广场(圆心为)与此公路所在直线相切于点,点为北半圆弧(弧)上的一点,过点作直线的垂线,垂足为,计划在内(图中阴影部分)进行绿化,设的面积为(单位:),
(1)设,将表示为的函数;
(2)确定点的位置,使绿化面积最大,并求出最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com