精英家教网 > 高中数学 > 题目详情

已知命题数学公式,命题q:(x+a)(x-3)>0,若p是q的充分不必要条件,则实数a的取值范围是


  1. A.
    (-3,-1]
  2. B.
    [-3,-1]
  3. C.
    (-∞,-3]
  4. D.
    (-∞,-1]
D
分析:求解本题要先对两个命题进行化简,解出其解集,由p是q的充分不必要条件可以得出p命题中有等式的解集是q命题中不等式解集的真子集,由此可以得到参数a的不等式,解此不等式得出实数a的取值范围
解答:对于命题,解得-1<x<1,则A=(-1,1)
对于命题q:(x+a)(x-3)>0,其方程的两根为-a与3,讨论如下,
若两根相等,则a=-3满足题意
若-a<3,则a>-3则不等式解集为(-∞,-a)∪(3,+∞),由p是q的充分不必要条件,得-a≥1,得a≤-1,故符合条件的实数a的取值范围-3<a≤-1
若-a>3,即a<-3,则不等式解集为(-∞,3)∪(-a,+∞),满足p是q的充分不必要条件,得a<-3,
综上知,符合条件的实数a的取值范围是(-∞,-1]
故选D
点评:本题考点必要条件、充分条件与充要条件的判断,考查不等式的解法以及利用充分不必要条件确定两个不等式解集之间的关系,以得出参数所满足的不等式,此是本章中的一种常见题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:x1、x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:只有一个实数x满足不等式x2+2
2
ax+11a≤0

若命题p是假命题,同时命题q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:不等式ex>m的解集为R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:曲线
x=-1+3cosθ
y=2+3sinθ
,(θ
为参数)所围成图形的面积被直线y=-2x平分;命题q:若抛物线x2=ay上一点P(x0,2)到焦点的距离为3,则a=2.那么下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2-x>ex,命题q:?a∈R+,loga(a2+1)>0,则(  )
A、命题p∨¬q是假命题B、命题p∧¬q是真命题C、命题p∨q是假命题D、命题p∧q是真命题

查看答案和解析>>

同步练习册答案