【题目】已知f(x)是定义在R上的奇函数,满足f(﹣ +x)=f( +x),当x∈[0, ]时,f(x)=ln(x2﹣x+1),则函数f(x)在区间[0,6]上的零点个数是( )
A.3
B.5
C.7
D.9
【答案】D
【解析】解:∵f(x)是定义在R上的奇函数,满足f(﹣ +x)=f( +x),
∴f( )=f( ),可得f(x+3)=f(x),
函数f(x)的周期为3,
∵当x∈[0, ]时,f(x)=ln(x2﹣x+1),
令f(x)=0,则x2﹣x+1=1,解得x=0或1,
又∵函数f(x)是定义域为R的奇函数,
∴在区间∈[﹣ , ]上,有f(﹣1)=﹣f(1)=0,f(0)=0.
由f(﹣ +x)=f( +x),取x=0,得
f(﹣ )=f( ),得f( )=f(﹣ )=0,
∴f(﹣1)=f(1)=f(0)=f( )=f(﹣ )=0.
又∵函数f(x)是周期为3的周期函数,
∴方程f(x)=0在区间[0,6]上的解有0,1, ,2,3,4, ,5,6.
共9个,
故选:D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+2|﹣2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[﹣2,1]使不等式a+1>f(x)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b是不相等的两个正数,且blna﹣alnb=a﹣b,给出下列结论:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正确结论的序号是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数)
(1)求曲线C的普通方程;
(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为 ρsin( ﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的焦点和上顶点分别为F1、F2、B,定义:△F1BF2为椭圆C的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知点 是椭圆 的一个焦点,且C1上任意一点到它的两焦点的距离之和为4.
(1)若椭圆C2与椭圆C1相似,且C2与C1的相似比为2:1,求椭圆C2的方程;
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任意一点,若点Q是直线y=nx与抛物线 异于原点的交点,证明:点Q一定在双曲线4x2﹣4y2=1上;
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb , 是否存在正方形ABCD,(设其面积为S),使得A、C在直线l上,B、D在曲线Cb上?若存在,求出函数S=f(b)的解析式及定义域;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a3成等比数列.
(1)求数列{an}的通顶公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n.使得Sn>60n+800?若存在,求n的最小值:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+ 中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+ =x求得x= .类比上述过程,则 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是 ,乙每轮猜对的概率是 ;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(I)“星队”至少猜对3个成语的概率;
(II)“星队”两轮得分之和为X的分布列和数学期望EX.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com