精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点为F1、F2,|F1F2|=14,P为椭圆上一点,∠F1PF2=
2
3
π,若△F1PF2的面积S=13
3
,求椭圆的标准方程.
考点:椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:设椭圆的标准方程为
x2
a2
+
y2
b2
=1
,(a>b>0),|PF1|=m,|PF2|=n,由已知知mn=52,m2+n2-2mncos120°=142,由此求出椭圆方程为
x2
62
+
y2
13
=1
.同理,设椭圆方程为
x2
b2
+
y2
a2
=1
,(a>b>0),解得椭圆方程为
x2
13
+
y2
62
=1
解答: 解:设椭圆的标准方程为
x2
a2
+
y2
b2
=1
,(a>b>0),
|PF1|=m,|PF2|=n,
S△PF1F2=13
3
,∴
1
2
mnsin120°=13
3

解得mn=52,①
△PF1F2中,|F1F2|=14,
∴m2+n2-2mncos120°=142,②
由①②,得(m+n)2=m2+n2+2mn=142+52=248,
∴4a2=248,解得a2=62,
又c2=49,∴b2=a2-c2=13,
∴椭圆方程为
x2
62
+
y2
13
=1

同理,设椭圆方程为
x2
b2
+
y2
a2
=1
,(a>b>0),
解得椭圆方程为
x2
13
+
y2
62
=1
点评:本题考查椭圆方程的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln|x|,则f′(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|-1≤x≤2},B={x|4x+p<0},且B⊆∁UA,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
ax2+ax-1
的定义域是R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-a|+b.
(1)若函数f(x)是奇函数,求f(x)的表达式;
(2)若a>0,b=-2,当x∈[0,1]时,恒有f(x)不大于零,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程是
x=1+t
y=1-2t
(t为参数),曲线C的极坐标方程是ρ=2,若直线l与曲线C相交于A,B两点,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数=x+yi(x,y∈R,i为虚数单位).
(1)若(x2-3)+yi=1+2i,且复数在复平面内对应的点在第二象限,求复数z;
(2)若y=1,且
z
1-i
是实数,求|z|.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数g(x)=-x2+mx是(-∞,0)上的增函数,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x)•f(x+
3
2
π)=-1.若f(
π
2
)=2,则f(11π)等于(  )
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

同步练习册答案