精英家教网 > 高中数学 > 题目详情

【题目】过双曲线的左焦点作圆的切线,切点为,延长交双曲线右支于点.若线段的中点为为坐标原点,则的大小关系是(

A. B.

C. D. 无法确定

【答案】A

【解析】

将点P置于第一象限.设F1是双曲线的右焦点,连接PF1.由M、O分别为FP、FF1的中点,知|MO|=|PF1|.由双曲线定义,知|PF|﹣|PF1|=2a,|FT|==b.由此知|MO|﹣|MT|=(|PF1|﹣|PF|)+|FT|=b﹣a.

将点P置于第一象限.

设F1是双曲线的右焦点,连接PF1

M、O分别为FP、FF1的中点,∴|MO|=|PF1|.

又由双曲线定义得,

|PF|﹣|PF1|=2a,

|FT|==b.

|MO|﹣|MT|

=|PF1|﹣|MF|+|FT|

=(|PF1|﹣|PF|)+|FT|

=b﹣a.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司的电子新产品未上市时,原定每件售价100元,经过市场调研发现,该电子新产品市场潜力很大,该公司决定从第一周开始销售时,该电子产品每件售价比原定售价每周涨价4元,5周后开始保持120元的价格平稳销售,10周后由于市场竞争日益激烈,每周降价2元,直到15周结束,该产品不再销售.

(Ⅰ)求售价(单位:元)与周次)之间的函数关系式;

(Ⅱ)若此电子产品的单件成本(单位:元)与周次之间的关系式为,试问:此电子产品第几周的单件销售利润(销售利润售价成本)最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数

()求实数的值;

()用定义证明函数上的单调性;

()若对任意的,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线ly=3x+3,求:

(1)点P(4,5)关于直线l的对称点坐标;

(2)直线l1yx-2关于直线l的对称直线的方程;

(3)直线l关于点A(3,2)的对称直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通安全法有规定:机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过马路,应当避让.我们将符合这条规定的称为“礼让斑马线”,不符合这条规定的称为“不礼让斑马线”.下表是六安市某十字路口监控设备所抓拍的5个月内驾驶员“不礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

“不礼让斑马线”的驾驶员人数

120

105

100

85

90

1)根据表中所给的5个月的数据,可用线性回归模型拟合的关系,请用相关系数加以说明;

2)求“不礼让斑马线”的驾驶员人数关于月份之间的线性回归方程;

3)若从45月份“不礼让斑马线”的驾驶员中分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的2人分别来自两个月份的概率;

参考公式:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱的中点,.

1)证明:平面平面.

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题:

在定义域上单调递增;

②若锐角满足,则

是定义在上的偶函数,且在上是增函数,若,则

④函数的一个对称中心是

其中真命题的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的零点;

(2)当,求函数上的最大值;

(3)对于给定的正数a,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

同步练习册答案