精英家教网 > 高中数学 > 题目详情

【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:

组别

候车时间

人数

[0,5)

2

[5,10)

6

[10,15)

4

[15,20)

2

[20,25]

1

(Ⅰ)求这15名乘客的平均候车时间;
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

【答案】解:(Ⅰ)由图表得:2.5+7.5+12.5+22.5=10.5
所以这15名乘客的平均候车时间为10.5分钟.
(Ⅱ)由图表得:这15名乘客中候车时间少于10分钟的人数为8,
所以,这60名乘客中候车时间少于10分钟的人数大约等于60=32.
(Ⅲ)设第三组的乘客为a,b,c,d,第四组的乘客为e,f,“抽到的两个人恰好来自不同的组”为事件A.
所得基本事件共有15种,即(ac),(ab),(ad),(ae),(af),(bc),(bd),(be),(bf),(cd),(ce),(cf),(de),(df),(ef),
抽到的两人恰好来自不同组的事件共8种,分别是(ae),(af),(be),(bf),(ce),(cf),(df),(df).
其中事件A包含基本事件8种,由古典概型可得P(A)=,即所求概率等于
【解析】(Ⅰ)用每一段的中间值乘以每一段的频率然后作和即得15名乘客的平均候车时间;
(Ⅱ)查出15名乘客中候车时间少于10分钟的人数,得到15名乘客中候车时间少于10分钟的频率,用频率乘以60即可得到答案;
(Ⅲ)用列举法写出从第三组和第四组中随机各抽取1人的所有事件总数,查出两人恰好来自不同组的事件个数,则两人恰好来自不同组的概率可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】5名师生站成一排照相留念,其中教师1人,男生2人,女生2.

(1)求两名女生相邻而站的概率;

(2)求教师不站中间且女生不站两端的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量分别为的三边所对的角

(Ⅰ)求角的大小

(Ⅱ)若成等比数列求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为自然对数的底数).

(1)求函数的极值;

(2)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[1,+∞)上的函数f(x)= 给出下列结论: ①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23n
③存在k∈( ),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正确命题的序号是(
A.①②③
B.①③④
C.①②④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为

(1)若函数时有极值,求表达式;

(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1 , E,F分别是上底面A1B1C1D1和侧面CDD1C1的中心,若 =x +y +z ,则x+y+z=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.

)求抽取的卡片上的数字满足的概率;

)求抽取的卡片上的数字不完全相同的概率.

查看答案和解析>>

同步练习册答案