精英家教网 > 高中数学 > 题目详情

设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点
(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(1)中的点)的取值范围。

(1)点T的坐标为(2,0) 
(2) 
(3)

解析试题分析:(1)设出P、Q的坐标,求得向量的坐标,利用 ,P(x0,y0)在双曲线上,即可求得结论;
(2)利用三点共线建立方程,利用P(x0,y0)在双曲线上,即可求得轨迹方程;
(3)用坐标表示,利用韦达定理,求得模长,从而可得函数关系式,进而可求其范围.
解:(1)由题,得,设

 ……①
在双曲线上,则  ……②
联立①、②,解得   由题意,
∴点T的坐标为(2,0) 
(2)设直线A1P与直线A2Q的交点M的坐标为(x,y)
由A1、P、M三点共线,得
  ……③ 
由A2、Q、M三点共线,得
  ……④ 联立③、④,解得    
在双曲线上,∴∴轨迹E的方程为 
(3)容易验证直线l的斜率不为0。
故可设直线l的方程为中,得  

则由根与系数的关系,得 ……⑤ ……⑥
 ∴有
将⑤式平方除以⑥式,得 

 



考点:本试题主要考查了轨迹方程,考查向量知识的运用,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
点评:解决该试题的关键是借助于向量关系式来表示得到坐标,同时能利用三点共线,进而得到坐标关系,解得轨迹方程。易错点就是设而不求的思想,在运算中的准确表示。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.
(1)求双曲线C的方程;
(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率

(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为.
(1)求椭圆的方程
(2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)在平面直角坐标系中,已知椭圆)的左焦点为,且点上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线的斜率为2且经过椭圆的左焦点.求直线与该椭圆相交的弦长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)椭圆:的两个焦点为,点在椭圆上,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,已知椭圆的长轴为,过点的直线轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率

(1)求椭圆的标准方程;
(2)设是椭圆上异于的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点的中点.试判断直线与以为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)离心率为的椭圆的左、右焦点分别为是坐标原点.
(1)求椭圆的方程;
(2)若直线交于相异两点,且,求.(其中是坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知是双曲线上不同的三点,且连线经过坐标原点,
若直线的斜率乘积,求双曲线的离心率;

查看答案和解析>>

同步练习册答案