精英家教网 > 高中数学 > 题目详情
12.已知Fn(x)=(-1)0Cn0f0(x)+(-1)1Cn1fi(x)+…+(-1)nCnnfn(x),(n∈N*)(x>0),其中,fi(x)(i∈{0,1,2,…,n})是关于x的函数.
(1)若fi(x)=xi(i∈N),求关于F2(1),F2017(2)的值;
(2)若fi(x)=$\frac{x}{x+i}$(i∈N),求证:Fn(x)=$\frac{n!}{(x+1)(x+2)…(x+n)}$(n∈N*).

分析 (1)由fi(x)=xi(i∈N),求出Fn(x)=(1-x)n,由此能求出F2(1)和F2017(2).
(2)由fi(x)=$\frac{x}{x+i}$(i∈N),知Fn(x)=$\sum_{i=0}^{n}[(-1)^{i}{C}_{n}^{i}\frac{x}{x+i}]$,(n∈N*),由此利用数学归纳法能证明Fn(x)=$\frac{n!}{(x+1)(x+2)…(x+n)}$(n∈N*).

解答 解:(1)∵fi(x)=xi(i∈N),
∴Fn(x)=(-1)0Cn0x0+(-1)1Cn1x1+…+(-1)nCnnxn=(1-x)n
∴F2(1)=(1-1)2=0,
F2017(2)=(1-2)2017=-1.
证明:(2)∵fi(x)=$\frac{x}{x+i}$(i∈N),
∴Fn(x)=(-1)0Cn0f0(x)+(-1)1Cn1fi(x)+…+(-1)nCnnfn(x)=$\sum_{i=0}^{n}[(-1)^{i}{C}_{n}^{i}\frac{x}{x+i}]$,(n∈N*),
①当n=1时,Fn(x)=$\sum_{i=0}^{1}[(-1)^{i}{C}_{1}^{i}\frac{x}{x+i}]$=1-$\frac{x}{x+1}$=$\frac{1}{x+1}$,∴n=1时,结论成立;
②假设n=k时,结论成立,即Fk(x)=$\sum_{i=0}^{k}[(-1)^{i}{C}_{k}^{i}\frac{x}{x+i}]$=$\frac{k!}{(x+1)(x+2)…(x+k)}$,
则当n=k+1时,Fk+1(x)=$\sum_{i=0}^{k+1}[(-1)^{i}{C}_{k+1}^{i}\frac{x}{x+i}]$
=1+$\sum_{i=1}^{k}[(-1)^{i}{C}_{k+1}^{i}\frac{x}{x+i}]$+(-1)${\;}^{k+1}{C}_{k+1}^{k+1}\frac{x}{x+k+1}$
=$1+\sum_{i=1}^{k}[(-1)^{i}({C}_{k}^{i}+{C}_{k}^{i-1})\frac{x}{x+i}]$+$(-1)^{k+1}{C}_{k+1}^{k+1}\frac{x}{x+k+1}$
=$\sum_{i=0}^{k}[(-1)^{i}{C}_{k}^{i}\frac{x}{x+i}]+\sum_{i=1}^{k+1}[(-1)^{i}{C}_{k}^{i-1}\frac{x}{x+i}]$
=${F}_{k}(x)-\sum_{i=1}^{k+1}[(-1)^{i-1}{C}_{k}^{i-1}\frac{x}{x+i}]$
=${F}_{k}(x)-\sum_{i=0}^{k}[(-1)^{i}{C}_{k}^{i}\frac{x}{x+i+1}]$
=${F}_{k}(x)-\sum_{i=0}^{k}[(-1)^{i}{C}_{k}^{i}\frac{x+1}{x+1+i}]\frac{x}{x+1}$
=${F}_{k}(x)-\frac{x}{x+1}{F}_{k}(x+1)$
=$\frac{k!}{(x+1)(x+2)…(x+k)}$-$\frac{k!}{(x+2)(x+3)…(x+1+k)}•\frac{x}{x+1}$
=$\frac{(x+1+k)•k!-xk!}{(x+1)(x+2)…(x+k)(x+1+k)}$
=$\frac{(k+1)1}{(x+1)(x+2)(x+3)…(x+1+k)}$,
∴n=k+1时,结论也成立.
结合①②知Fn(x)=$\frac{n!}{(x+1)(x+2)…(x+n)}$(n∈N*).

点评 本题考查函数值的求法,考查函数解析式的证明,综合性强,难度大,对数学思维能力要求较高,解题时要注意数学归结法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知焦点在x 轴上的双曲线的渐近线方程为$y=±\frac{1}{2}x$,则双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.空间直角坐标系Oxyz中的点P(1,2,3)在xOy平面内射影是Q,则点Q的坐标为(  )
A.(1,2,0)B.(0,0,3)C.(1,0,3)D.(0,2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x2-1|+(k+4)x,g(x)=x2-4x.
(1)若函数f(x)的图象过点(1,0),求k的值;
(2)若函数y=g(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t,若存在,求出t的值;若不存在,请说明理由(区间[p,q]的长度为q-p);
(3)若关于x的方程f(x)+g(x)=0在(0,2)上有两个不同的x1,x2解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,矩形ABCD是一个历史文物展览厅的俯视图,点E在AB上,在梯形BCDE区域内部展示文物,DE是玻璃幕墙,游客只能在△ADE区域内参观,在AE上点P处安装一可旋转的监控摄像头,∠MPN为监控角,其中M、N在线段DE(含端点)上,且点M在点N的右下方,经测量得知:AD=6米,AE=6米,AP=2米,∠MPN=$\frac{π}{4}$,记∠EPM=θ(弧度),监控摄像头的可视区域△PMN的面积为S平方米.
(1)求S关于θ的函数关系式,并写出θ的取值范围:(参考数据:tan$\frac{5}{4}$≈3)
2)求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$f(x)=sin({x+\frac{π}{2}}),g(x)=cos({x-\frac{π}{2}})$,则下列结论中正确的是(  )
A.函数f(x)的图象向左平移π个单位长度可得到y=g(x)的函象
B.函数y=f(x)+g(x)的值域为[-2,2]
C.函数y=f(x)•g(x)在$[{0,\frac{π}{2}}]$上单调递增
D.函数y=f(x)-g(x)的图象关于点$({\frac{π}{4},0})$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设有一个线性回归方程为$\widehat{y}$=1.6x+2,当变量x增加一个单位时,y的值平均增加1.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的焦点到渐近线的距离为(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线x-y+1=0的倾斜角为(  )
A.90°B.45°C.135°D.60°

查看答案和解析>>

同步练习册答案