精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)求时,函数的单调区间;

2)若函数有两个零点,求正整数的最小值

【答案】1)函数的单调递增区间为,单调递减区间为;(23.

【解析】

1时,对进行求导得,根据导数研究函数的单调性,即可求出函数的单调区间;

2)先求导得,分两种情况当和当时,根据导数研究函数的单调性,讨论的单调性,如果函数有两个零点,得出,且,即:,构造函数,求得在区间内为增函数,且,存在进而得出答案.

解:(1)当时,得,则的定义域为

时,即,解得:(舍去),

,解得:,则时,单调递增;

,解得:,则时,单调递减,

综上得:函数的单调递增区间为,单调递减区间为.

2)由题可知,,则的定义域为

时,,函数在区间内单调递增,

所以,函数的单调增区间为,无单调减区间;

时,由,得;由,得

所以,函数的单调增区间为,单调减区间为

如果函数有两个零点,则,且

,即:

,则

可知在区间内为增函数,且

所以存在

时,;当时,

所以,满足条件的最小正整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称柯西函数,则下列函数:

;②;③;④.其中是柯西函数的为(

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,函数的图象在它们与坐标轴交点处的切线互相平行.

1)求的值;

2)若存在,使不等式成立,求实数的取值范围;

3)令,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)研究函数的极值点;

(2)当时,若对任意的,恒有,求的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】D是圆Ox2+y216上的任意一点,m是过点D且与x轴垂直的直线,E是直线mx轴的交点,点Q在直线m上,且满足2|EQ||ED|.当点D在圆O上运动时,记点Q的轨迹为曲线C

1)求曲线C的方程.

2)已知点P23),过F20)的直线l交曲线CAB两点,交直线x8于点M.判定直线PAPMPB的斜率是否依次构成等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BCDG,垂足为CtanODC=EF=12 cmDE=2 cmA到直线DEEF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为其右焦点,点满足.

①证明: 为定值;

②设直线与椭圆有两个不同的交点,与轴交于点.若成等差数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:

一次购物款(单位:元)

顾客人数

统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.

(Ⅰ)试确定 的值,并估计每日应准备纪念品的数量;

(Ⅱ)为了迎接春节,商场进行让利活动,一次购物款元及以上的一次返利元;一次购物不超过元的按购物款的百分比返利,具体见下表:

一次购物款(单位:元)

返利百分比

请问该商场日均大约让利多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在双曲线的右支上存在点,使得点与双曲线的左、右焦点形成的三角形的内切圆的半径为,若的重心满足,则双曲线的离心率为__________.

查看答案和解析>>

同步练习册答案