精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=(ax-1)ex,a∈R.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)当m>n>0时,证明:men+n<nem+m.

分析 (Ⅰ)求出f(x)的定义域,以及导数,讨论a=0,a>0,a<0,判断导数符号,解不等式即可得到所求单调区间;
(Ⅱ)运用分析法证明.要证men+n<nem+m,即证men-m<nem-n,也就是证$\frac{{e}^{n}-1}{n}$<$\frac{{e}^{m}-1}{m}$,令g(x)=$\frac{{e}^{x}-1}{x}$,x>0,求出导数,再令h(x)=xex-ex+1,求出导数,判断单调性,即可得证.

解答 (Ⅰ)解:f(x)的定义域为R,且f′(x)=(ax+a-1)ex
当a=0时,f′(x)=-ex<0,此时f(x)的单调递减区间为(-∞,+∞);
当a>0时,由f′(x)>0,得x>-$\frac{a-1}{a}$,由f′(x)<0,得x<-$\frac{a-1}{a}$.
此时f(x)的单调减区间为(-∞,-$\frac{a-1}{a}$),单调增区间为($-\frac{a-1}{a}$,+∞);
当a<0时,由f′(x)>0,得x<-$\frac{a-1}{a}$,由f′(x)<0,得x>-$\frac{a-1}{a}$.
此时f(x)的单调减区间为($-\frac{a-1}{a}$,+∞),单调增区间为(-∞,-$\frac{a-1}{a}$).
(Ⅱ)证明:要证men+n<nem+m,即证men-m<nem-n,
也就是证m(en-1)<n(em-1).
也就是证$\frac{{e}^{n}-1}{n}$<$\frac{{e}^{m}-1}{m}$,
令g(x)=$\frac{{e}^{x}-1}{x}$,x>0,g′(x)=$\frac{x{e}^{x}-{e}^{x}+1}{{x}^{2}}$,
再令h(x)=xex-ex+1,h′(x)=ex+xex-ex=xex>0,
可得h(x)在x>0递增,即有h(x)>h(0)=0,
则g′(x)>0,g(x)在(0,+∞)递增,
由m>n>0,可得$\frac{{e}^{n}-1}{n}$<$\frac{{e}^{m}-1}{m}$,
故原不等式成立.

点评 本题考查函数的单调性、导数及其应用、不等式的证明等基础知识,考查推理论证能力、运算求解能力及抽象概括能力,考查函数与方程思想、分类与整合思想,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的图象经过$M(\sqrt{3},\frac{{\sqrt{10}}}{2})$,$N(2,\frac{{\sqrt{15}}}{3})$两点,F是C的右焦点,D点坐标为(3,0).
(1)求椭圆C的标准方程;
(2)过点F的直线l交C于A、B两点,求直线DA、DB的斜率之积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sin2α=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),sin(β-$\frac{π}{4}$)=$\frac{3}{5}$,β∈($\frac{π}{4}$,$\frac{π}{2}$).
(1)求sinα和cosα的值;
(2)求tan(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为$\frac{1}{2}R$,AB=AC=2,∠BAC=120°,则球O的表面积为$\frac{64}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,正方体ABCD-A′B′C′D′的棱长为1,O是平面A′B′C′D′的中心,则O到平面ABC′D′的距离是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.抛物线C:y2=2px(p>0)的焦点为F,抛物线C上点M的横坐标为1,且|MF|=$\frac{5}{4}$.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过焦点F作两条相互垂直的直线,分别与抛物线C交于M、N和P、Q四点,求四边形MPNQ 面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:[20,25],[25,30],[30,35],[35,40],[40,45].
(Ⅰ)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40]岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出5名学生,将这50名学生随机编号1~50号,并分组,第一组1~10号,第二组11~20号,…,第五组41~50号,若在第三组中抽得号码为22的学生,则在第五组中抽得号码为(  )的学生.
A.42B.44C.46D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx,g(x)=ax2-(a+1)x+1(a∈R).
(Ⅰ)当a=0时,设h(x)=f(x)+g(x),求h(x)的单调区间;
(Ⅱ)当x≥1时,f(x)≤g(x)+lnx,求实数a的取值范围.

查看答案和解析>>

同步练习册答案