精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x的焦点是F,定点A(
12
,1)
,P是抛物线上的动点,则|PA|+|PF|的最小值是
 
分析:设点P在抛物线准线上的射影为Q,根据抛物线的定义可知|PF|=|PQ|,进而把问题转化为求|PA|+|PQ|的最小值.由平面几何知识,可知当P、Q、A三点共线时|PA|+|PQ|有最小值,由此即可算出|PA|+|PF|的最小值.
解答:精英家教网解:由题意,抛物线y2=4x的准线为x=-1,焦点是F(1,0).
设P、A在抛物线的准线上的射影分别为Q、B,连结PQ、AB.
根据抛物线的定义,可得|PF|=|PQ|,
∵|PA|+|PF|=|PA|+|PQ|,
∴当|PA|+|PQ|取得最小值时,|PA|+|PF|有最小值.
由平面几何知识,可得当P、Q、A三点共线时,即点P、Q在线段AB上时,
|PA|+|PQ|最小,最小值为
1
2
-(-1)=
3
2

因此,|PA|+|PF|的最小值是
3
2

故答案为:
3
2
点评:本题给出抛物线的方程,求抛物线上的动点P与A、F两点距离之和的最小值.着重考查了抛物线的定义、标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0).
(1)求k的取值范围;
(2)求证:x0>3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线
y
2
 
=4x
的焦点为F,过点A(4,4)作直线l:x=-1垂线,垂足为M,则∠MAF的平分线所在直线的方程为
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点.
(1)求点M的轨迹方程.
(2)求
nm+3
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,其焦点为F,P是抛物线上一点,定点A(6,3),则|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步练习册答案