ÒÑÖªº¯Êý£¨a¡Ù0ÇÒa¡Ù1£©£®
£¨1£©ÊÔ¾ÍʵÊýaµÄ²»Í¬È¡Öµ£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÒÑÖªµ±x£¾0ʱ£¬º¯ÊýÔÚÉϵ¥µ÷µÝ¼õ£¬ÔÚÉϵ¥µ÷µÝÔö£¬ÇóaµÄÖµ²¢Ð´³öº¯ÊýµÄ½âÎöʽ£»
£¨3£©£¨Àí£©¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÊÇ·ñ´æÔÚ¾­¹ýÔ­µãµÄÖ±Ïßl£¬Ê¹µÃlΪÇúÏßCµÄ¶Ô³ÆÖ᣿Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨ÎÄ£© ¼Ç£¨2£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÇúÏßCÊÇ·ñΪÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÇó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢¼ÓÒÔÖ¤Ã÷£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÓÚa¡Ù0ÇÒa¡Ù1£¬=£¨x+£©£¬ÓÉË«¹³º¯Êýy=x+£¨m£¾0£©ÔÚ£¨-¡Þ£¬-]£¬[£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÔÚ[-£¬0£©£¬£¨0£¬]µ¥µ÷µÝ¼õ£¬¿ÉÅжÏf£¨x£©ÔÚµ±a£¼0»òµ±a£¾1ʱµÄµ¥µ÷Çø¼ä£»µ±0£¼a£¼1ʱ£¬¿ÉÓÉy=ΪRÉϵÄÔöº¯Êý£¬y=Ϊ£¨-¡Þ£¬0£©£¬£¨0£¬+¡Þ£©ÉϵÄÔöº¯Êý£¬Åжϼ´¿É£»
£¨2£©ÓÉÌâÒâ¼°£¨1£©ÖТۿÉÖªÇÒa£¾1£¬¿É½âµÃa=3£¬´Ó¶ø¿ÉÇóµÃº¯Êý½âÎö£» 
£¨3£©£¨Àí£© ¼ÙÉè´æÔÚ¾­¹ýÔ­µãµÄÖ±ÏßlΪÇúÏßCµÄ¶Ô³ÆÖᣬÏÔÈ»x¡¢yÖá²»ÊÇÇúÏßCµÄ¶Ô³ÆÖᣬ¿ÉÉèl£ºy=kx£¨k¡Ù0£©£¬ÉèP£¨p£¬q£©ÎªÇúÏßCÉϵÄÈÎÒâÒ»µã£¬P'£¨p'£¬q'£©ÓëP£¨p£¬q£©¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇÒp¡Ùp'£¬q¡Ùq'£¬ÔòP'Ò²ÔÚÇúÏßCÉÏ£¬ÁÐʽ¼ÆËã¼´¿É£»
£¨ÎÄ£©ÏÈÅжϺ¯ÊýµÄ¶¨ÒåÓòÊÇ·ñ¹ØÓÚÔ­µã¶Ô³Æ£¬Èô¶¨ÒåÓò¹ØÓÚÔ­µã¶Ô³Æ£¬ÔÙÖ¤Ã÷f£¨-x£©=-f£¨x£©¼´¿É£®
½â´ð£º½â£º¡ß=£¨x+£©£¬
¡àÓÉË«¹³º¯Êýy=x+£¨m£¾0£©ÔÚ£¨-¡Þ£¬-]£¬[£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÔÚ[-£¬0£©£¬£¨0£¬]µ¥µ÷µÝ¼õ£¬¿ÉµÃ£º
¢Ùµ±a£¼0ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ¼°£¬
¢Úµ±a£¾1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ¼°£»
ÓÖµ±0£¼a£¼1ʱ£¬y=ΪRÉϵÄÔöº¯Êý£¬y=Ϊ£¨-¡Þ£¬0£©£¬£¨0£¬+¡Þ£©ÉϵÄÔöº¯Êý£¬
¡à¢Ûµ±0£¼a£¼1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨-¡Þ£¬0£©¼°£¨0£¬+¡Þ£©£»£¨6·Ö£©
£¨2£©ÓÉÌâÉè¼°£¨1£©ÖТÛÖªÇÒa£¾1£¬½âµÃa=3£¬£¨9·Ö£©
Òò´Ëº¯Êý½âÎöʽΪ£¨x¡Ù0£©£®                     £¨10·Ö£©
£¨3£©£¨Àí£©¼ÙÉè´æÔÚ¾­¹ýÔ­µãµÄÖ±ÏßlΪÇúÏßCµÄ¶Ô³ÆÖᣬÏÔÈ»x¡¢yÖá²»ÊÇÇúÏßCµÄ¶Ô³ÆÖᣬ¹Ê¿ÉÉèl£ºy=kx£¨k¡Ù0£©£¬ÇÒp¡Ùp'£¬q¡Ùq'£¬ÔòP'Ò²ÔÚÇúÏßCÉÏ£¬ÁÐʽ¼ÆËã¼´¿É£»
ÉèP£¨p£¬q£©ÎªÇúÏßCÉϵÄÈÎÒâÒ»µã£¬P'£¨p'£¬q'£©ÓëP£¨p£¬q£©¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇÒp¡Ùp'£¬q¡Ùq'£¬ÔòP'Ò²ÔÚÇúÏßCÉÏ£¬Óɴ˵㬣¬
ÇÒ£¬£¬£¨14·Ö£©
ÕûÀíµÃ£¬½âµÃ»ò£¬
ËùÒÔ´æÔÚÖ±Ïß¼°ÎªÇúÏßCµÄ¶Ô³ÆÖᣮ           £¨16·Ö£©
£¨ÎÄ£©¸Ãº¯ÊýµÄ¶¨ÒåÓòD=£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©£¬ÇúÏßCµÄ¶Ô³ÆÖÐÐÄΪ£¨0£¬0£©£¬
ÒòΪ¶ÔÈÎÒâx¡ÊD£¬£¬
ËùÒԸú¯ÊýΪÆ溯Êý£¬ÇúÏßCΪÖÐÐĶԳÆͼÐΣ®                    £¨10·Ö£©
µãÆÀ£º±¾Ì⿼²éº¯ÊýÆæżÐÔ¡¢µ¥µ÷ÐÔÓë¶Ô³ÆÐÔ£¬º¯Êý½âÎöʽµÄÇó½â£¬£¨1£©ÓÉʵÊýaµÄ²»Í¬È¡Öµ£¬Ñо¿º¯ÊýµÄµ¥µ÷Çø¼äÊÇÄѵ㣬¿ÉÒÔÀûÓõ¼ÊýÑо¿£¬×ÅÖØ¿¼²é×ۺϷÖÎö¡¢×ÛºÏÓ¦ÓõÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=kx£¬£¨k¡Ù0£©ÇÒÂú×ãf£¨x+1£©•f£¨x£©=x2+x£¬º¯Êýg£¨x£©=ax£¬£¨a£¾0ÇÒa¡Ù1£©£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÎªRÉϵÄÔöº¯Êý£¬h(x)=
f(x)+1
f(x)-1
(f(x)¡Ù1)
£¬ÎÊÊÇ·ñ´æÔÚʵÊýmʹµÃh£¨x£©µÄ¶¨ÒåÓòºÍÖµÓò¶¼Îª[m£¬m+1]£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©ÒÑÖª¹ØÓÚxµÄ·½³Ìg£¨2x+1£©=f£¨x+1£©•f£¨x£©Ç¡ÓÐһʵÊý½âΪx0£¬ÇÒx0¡Ê(
1
4
£¬
1
2
)
ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
1
2
x2-3x+£¨a-1£©lnx£¬g£¨x£©=ax£¬h£¨x£©=f£¨x£©-g£¨x£©+3x£¬ÆäÖÐa¡ÊRÇÒa£¾1£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©µÄ×îСֵ£»
£¨II£©µ±a=3ʱ£¬Çóº¯Êýh£¨x£©µÄµ¥µ÷Çø¼ä¼°¼«Öµ£»
£¨III£©Èô¶ÔÈÎÒâµÄx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬x1¡Ùx2£¬º¯Êýh£¨x£©Âú×ã
h(x1)-h(x2)
x1-x2
£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
1
2
x2-3x+£¨a-1£©lnx£¬g£¨x£©=ax£¬h£¨x£©=f£¨x£©-g£¨x£©+3x£¬ÆäÖÐa¡ÊRÇÒa£¾1£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©µÄ×îСֵ£»
£¨II£©µ±a=3ʱ£¬Çóº¯Êýh£¨x0µÄµ¥µ÷Çø¼ä¼°¼«Öµ£»
£¨III£©Èô¶ÔÈÎÒâµÄx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬x1¡Ùx2£¬º¯Êýh£¨x£©Âú×ã
h(x1)-h(x2)
x1-x2
£¾-1
£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê¹ã¶«Ê¡¸ß¿¼³å´ÌÔ¤²âÊýѧÊÔ¾í13£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êý£¨a¡Ù0ÇÒa¡Ù1£©£®
£¨¢ñ£©ÊÔ¾ÍʵÊýaµÄ²»Í¬È¡Öµ£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©ÒÑÖªµ±x£¾0ʱ£¬º¯ÊýÔÚÉϵ¥µ÷µÝ¼õ£¬ÔÚÉϵ¥µ÷µÝÔö£¬ÇóaµÄÖµ²¢Ð´³öº¯ÊýµÄ½âÎöʽ£»
£¨¢ó£©¼Ç£¨¢ò£©Öеĺ¯ÊýµÄͼÏóΪÇúÏßC£¬ÊÔÎÊÊÇ·ñ´æÔÚ¾­¹ýÔ­µãµÄÖ±Ïßl£¬Ê¹µÃlΪÇúÏßCµÄ¶Ô³ÆÖ᣿Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸