精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,则f(f(﹣2))= , 若f(x)≥2,则x的取值范围为

【答案】0;x≥3或x=0
【解析】解:由分段函数的表达式得f(﹣2)= =4﹣2=2, f(2)=0,故f(f(﹣2))=0,
若x≤﹣1,由f(x)≥2得( x﹣2≥2得( x≥4,则2x≥4,
得﹣x≥2,则x≤﹣2,此时x≤﹣2.
若x>﹣1,由f(x)≥2得(x﹣2)(|x|﹣1)≥2,
即x|x|﹣x﹣2|x|≥0,
若x≥0得x2﹣3x≥0,则x≥3或x≤0,此时x≥3或x=0,
若x<0,得﹣x2+x≥0,得x2﹣x≤0,得0≤x≤1,此时无解,
综上x≥3或x=0,
所以答案是:0,x≥3或x=0
【考点精析】认真审题,首先需要了解函数的值(函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆M,直线lA为直线l上一点.

,过A作圆M的两条切线,切点分别为PQ,求的大小;

若圆M上存在两点BC,使得,求点A横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函f(x)=ax2﹣ex(a∈R). (Ⅰ)a=1时,试判断f(x)的单调性并给予证明;
(Ⅱ)若f(x)有两个极值点x1 , x2(x1<x2).
(i) 求实数a的取值范围;
(ii)证明:﹣ . (注:e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)已知的两个零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,为线段的垂直平分线,交与点上异于的任意一点.

的值;

判断的值是否为一个常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 + =1(a>b>0)的左右焦点分别为F1 , F2 , 点D在椭圆上,DF1⊥F1F2 =2 ,△DF1F2的面积为 . (Ⅰ)求该椭圆的标准方程;
(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2) 已知点的极坐标为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

同步练习册答案