精英家教网 > 高中数学 > 题目详情

【题目】超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.

1)求该产品不能销售的概率;

2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60.已知一箱中有产品4件,记一箱产品获利元,求的分布列,并求出均值.

【答案】1;(2)分布列见解析,.

【解析】

1)记“该产品不能销售”为事件,则,计算得到答案.

2的取值为-240,-130,-2090200,计算概率得到分布列,计算均值得到答案.

1)记“该产品不能销售”为事件,则

所以该产品不能销售的概率为.

2)依据题意的,的取值为-240,-130,-2090200

.

所以的分布列为:

-240

-130

-20

90

200

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.

1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值

2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形,其中三角形区域为球类活动场所;四边形为文艺活动场所,,为运动小道(不考虑宽度)千米.

(1)求小道的长度;

(2)求球类活动场所的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边边上.,矩形的面积为.

1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;

2)试问如何截取(即取何值时),可使得到的矩形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年是中国改革开放的第40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.

(1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用表示年龄在内的人数,求的分布列和数学期望;

(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是边长为的菱形,交于点,平面平面.

(1)求证:平面

(2)若为等边三角形,点的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时,.现已画出函数轴右侧的图象,如图所示.

1)画出函数轴左侧的图象,根据图象写出函数上的单调区间;

2)求函数上的解析式;

3)解不等式.

查看答案和解析>>

同步练习册答案