【题目】对于定义在上的函数,若函数满足:
①在区间上单调递减,②存在常数p,使其值域为,则称函数是函数的“逼进函数”.
(1)判断函数是不是函数的“逼进函数”;
(2)求证:函数不是函数,的“逼进函数”
(3)若是函数的“逼进函数”,求a的值.
【答案】(1)见解析; (2)见解析; (3)2.
【解析】
(1)由f(x)﹣g(x),化简整理,结合反比例函数的单调性和值域,即可判断;
(2)由指数函数和一次函数的单调性,可得满足①,说明不满足②,即可得证;
(3)由新定义,可得y=xax为[0,+∞)的减函数,求得导数,由不等式恒成立思想,可得a的范围;再由值域为(0,1],结合不等式恒成立思想可得a的范围,即可得到a的值.
(1) ,
可得在[0,+∞)递减,且,
,可得存在,函数y的值域为,
则函数是函数,的“逼进函数”;
(2)证明:,
由,在[0,+∞)递减,
则函数在[0,+∞)递减,
则函数在[0,+∞)的最大值为1;
由时,,时,,
则函数在[0,+∞)的值域为(-∞,1],
即有函数不是函数,x∈[0,+∞)的“逼进函数”;
(3)是函数,的“逼进函数”,
可得为[0,+∞)的减函数,
可得导数在[0,+∞)恒成立,
可得,
由x>0时,,
则,即;
又在[0,+∞)的值域为(0,1],
则,
x=0时,显然成立;
x>0时,,
可得,即.
则a=2.
科目:高中数学 来源: 题型:
【题目】设函数在上有意义,实数和满足,若在区间上不存在最小值,则称在上具有性质.
(1)当,且在区间上具有性质时,求常数的取值范围;
(2)已知,且当,,判断在区间上是否具有性质,请说明理由:
(3)若对于满足的任意实数和,在上具有性质时,且对任意,当时有:,证明:当时,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,右顶点为,且过点,圆是以线段为直径的圆,经过点且倾斜角为的直线与圆相切.
(1)求椭圆及圆的方程;
(2)是否存在直线,使得直线与圆相切,与椭圆交于两点,且满足?若存在,请求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,且经过点,,,,为椭圆的四个顶点(如图),直线过右顶点且垂直于轴.
(1)求该椭圆的标准方程;
(2)为上一点(轴上方),直线,分别交椭圆于,两点,若,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知是曲线:上的动点,将绕点顺时针旋转得到,设点的轨迹为曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线,的极坐标方程;
(2)在极坐标系中,点,射线与曲线,分别相交于异于极点的两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,顺次是椭圆:的右顶点、上顶点和下顶点,椭圆的离心率,且.
(1)求椭圆的方程;
(2)若斜率的直线过点,直线与椭圆交于,两点,试判断:以为直径的圆是否经过点,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 (分)是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
时间(分) | ||||
频数 |
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com