精英家教网 > 高中数学 > 题目详情
4.已知点B(-2,0)、C(2,0),且△ABC的周长等于14,求顶点A的轨迹方程.

分析 根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.

解答 解:∵△ABC的周长为14,顶点B(-2,0)、C(2,0),
∴BC=4,AB+AC=14-4=10,
由于10>4,所以点A在以点B(-2,0)、C(2,0)为焦点,长轴长为10的椭圆上,其中a=5,c=2,则b2=a2-c2=52-22=21,
所以点A的轨迹方程为$\frac{x^2}{25}+\frac{y^2}{21}=1$(x≠0)..

点评 本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ax3+bx2+cx-34(a,b,c∈R)的导函数为f′(x),若不等式f′(x)≤0的解集为{x|-2≤x≤3},且f(x)的极小值等于-196,则a的值是(  )
A.-$\frac{81}{22}$B.$\frac{1}{3}$C.5D..4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知一扇形的弧所对的圆心角为60°,半径r=20cm,则扇形的周长为40+$\frac{20}{3}$πcm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)≤0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{c}$|的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{2}$-1D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{a(x-b)}{(x-b)^{2}+c}$(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(mn>0),给出下列四个命题:
①当b=0时,函数f(x)在(0,$\sqrt{c}$)上单调递增,在($\sqrt{c}$,+∞)上单调递减;
②函数f(x)的图象关于x轴上某点成中心对称;
③存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;
④关于x的方程g(x)=0的解集可能为{-3,-1,0,1}.
则正确命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(I)求椭圆C的方程;
(II)设经过F2的直线m与曲线C交于P、Q两点,若${\overrightarrow{QF}_2}=2\overrightarrow{{F_2}P}$,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在长方体ABCD-A1B1C1D1中,AB=2AD=4,A A1=2$\sqrt{2}$,M是C1D1的中点.
(1)在平面A1B1C1D1内,请作出过点M与BM垂直的直线l,并证明l⊥BM;
(2)设(1)中所作直线l与BM确定平面为α,求直线BB1与平面α所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.二项式(x$\sqrt{x}$-$\frac{1}{x}$)5的展开式中常数项为-10.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y=4x2,过点P(0,2)作直线l,交抛物线于A,B两点,O为坐标原点,
(Ⅰ)求证:$\overrightarrow{OA}•\overrightarrow{OB}$为定值;
(Ⅱ)求△AOB面积的最小值.

查看答案和解析>>

同步练习册答案