精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
b2
=1(0<b<2)
的离心率为
3
2

(1)求此椭圆的方程;
(2)若直线x-y+m=0与已知椭圆交于A,B两点,P(0,1),且|PA|=|PB|,求实数m的值.
分析:(1)利用椭圆的离心率,建立方程,求出b的值,即可得到椭圆的方程;
(2)直线方程与椭圆方程联立,利用韦达定理确定AB的中点坐标,利用R(0,1),且|RA|=|RB|,可得斜率之间的关系,从而可得结论.
解答:解:(1)由题意,
4-b2
4
=
3
4
,∴b=1,
∴椭圆的方程为
x2
4
+y2=1

(2)设A(x1,y1),B(x2,y2),则
直线x-y+m=0与已知椭圆方程联立,消去y可得
5
4
x2+2mx+m2-1=0

∴x1+x2=-
8m
5

∴y1+y2=x1+x2+2m=
2m
5

∴AB的中点坐标为(-
4m
5
m
5

∵R(0,1),且|RA|=|RB|,
m
5
-1
-
4
5
m
×1=-1

m=-
5
3
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x24
+y2=1
的左、右两个顶点分别为A,B,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2
(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2=1
,过E(1,0)作两条直线AB与CD分别交椭圆于A,B,C,D四点,已知kABkCD=-
1
4

(1)若AB的中点为M,CD的中点为N,求证:①kOMkON=-
1
4
为定值,并求出该定值;②直线MN过定点,并求出该定点;
(2)求四边形ACBD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区三模)已知椭圆
x2
4
+y2=1
的焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=90°,则点P的纵坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x24
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案