精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m使得
f(cos2θ﹣7)+f(4m﹣2mcosθ)>f(0),对一切都成立?若存在,求出实数m的取值范围;若不存在,请说明理由.
解:∵奇函数f(x)的定义域为R
∴f(0)=0
∵f(cos2θ﹣7)+f(4m﹣2mcosθ)>f(0)
∴f(cos2θ﹣7)>f(2mcosθ﹣4m)恒成立
又∵f(x)在R上单调递增
∴cos2θ﹣7>2mcosθ﹣4m
∴2cos2θ﹣8>2mcosθ﹣4m 即cosθ+2>m恒成立
∵0≤cosθ≤1
∴2≤2+cosθ≤3
∴m<2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤
12
时,f(x)=x-x2
(1)求证:f(x)是周期函数;
(2)求f(x)在区间[1,2]上的解析式;
(3)求方程f(x)=log10000x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(-x)的定义域为[-1,0)∪(0,1],其图象是两条直线的一部分(如图所示),则不等式f(x)-f(-x)>-1的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为[-1,1],当x∈[-1,0)时,f(x)=-(
1
2
)
x

(1)求函数f(x)在[0,1]上的值域;
(2)若x∈(0,1],
1
4
f2(x)-
λ
2
f(x)+1的最小值为-2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2-2x-3,求f(x)的解析式.
(2)已知奇函数f(x)的定义域为[-3,3],且在区间[-3,0]内递增,求满足f(2m-1)+f(m2-2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设a>0,f(x)=
ex
a
+
a
ex
是R上的偶函数,求实数a的值;
(2)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

同步练习册答案