科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题
已知函数.
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数在上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省高三上学期10月月考文科数学卷 题型:选择题
已知函数的定义域为,部分函数值如表所示,其导函数的图象如图所示,若正数,满足,则的取值范围是( )
-3 |
0 |
6 |
|
1 |
1 |
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题
(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。
已知函数,
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以3为上界函数值,求实数的取值范围;
(3)若,求函数在上的上界T的取值范围。
查看答案和解析>>
科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题
(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。
已知函数,
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以3为上界函数值,求实数的取值范围;
(3)若,求函数在上的上界T的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com