精英家教网 > 高中数学 > 题目详情

【题目】为了解学生完成数学作业所需时间,某学校统计了高三年级学生每天完成数学作业的平均时间介于30分钟到90分钟之间,图5是统计结果的频率分布直方图.

(1)数学教研组计划对作业完成较慢的20%的学生进行集中辅导,试求每天完成数学作业的平均时间为多少分钟以上的学生需要参加辅导?

(2)现从高三年级学生中任选4人,记4人中每天完成数学作业的平均时间不超过50分钟的人数为,求的分布列和期望.

【答案】(1)65(2)

【解析】试题分析:(1)由频率分布直方图知70-90有10%,60-70有20%,所以65分钟以上的同学需要参加辅导(2)由题意得,根据二项分布公式可得分布列及数学期望

试题解析:(Ⅰ)设每天完成作业所需时间为x分钟以上的同学需要参加辅导,则

(分钟),

所以,每天完成数学作业的平均时间为65分钟以上的同学需要参加辅导.

(Ⅱ)把统计的频率作为概率,则选出的每个学生完成作业的时间不超过50分钟的概率为0.2

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+ +4,(a≠0,b≠0),则f(2)+f(﹣2)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知数列{an}是等差数列,且a1,a2(a1<a2)分别为方程x2﹣6x+5=0的二根.

(1)求数列{an}的前n项和Sn

(2)在(1)中,设bn=,求证:当c=﹣时,数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx+ax2﹣ax+5,a∈R.
(1)若函数f(x)在x=1处有极值,求实数a的值;
(2)若函数f(x)在区间(0,+∞)内单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(1)b5=
(2)b2n1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对具有线性相关关系的两个变量y与x进行回归分析,得到一组样本数据(x1 , y1),(x2 , y2)…(xn , yn),则下列说法中不正确的是(
A.若最小二乘法原理下得到的回归直线方程 =0.52x+ ,则y与x具有正相关关系
B.残差平方和越小的模型,拟合的效果越好
C.在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适
D.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)令,求的单调区间;

(2)已知处取得极大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知动圆恒过且与直线相切,动圆圆心的轨迹记为;直线轴的交点为,过点且斜率为的直线与轨迹有两个不同的公共点 为坐标原点.

(1)求动圆圆心的轨迹的方程,并求直线的斜率的取值范围;

(2)点是轨迹上异于 的任意一点,直线 分别与过且垂直于轴的直线交于 ,证明: 为定值,并求出该定值;

(3)对于(2)给出一般结论:若点,直线,其它条件不变,求的值(可以直接写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①由样本数据得到的回归方程 必过样本点的中心( );
②用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好;
③若线性回归方程为 =3﹣2.5x,则变量x每增加1个单位时,y平均减少2.5个单位;
④在残差图中,残差点分布的带状区域的宽度越窄,残差平方和越小.
上述四个命题中,正确命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案