精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知b2 , a2 , c2成等差数列.
(1)求cosA的最小值;
(2)若a=2,当A最大时,△ABC面积的最大值?

【答案】
(1)解:∵b2,a2,c2成等差数列,

∴2a2=b2+c2

又∵cosA= = = = (当且仅当b=c时等号成立),即cosA最小值为


(2)解:由(1)知 ,且b2+c2=2a2=8≥2bc,

∴bc≤4,

=


【解析】(1)由已知利用等差数列的性质可得 ,利用余弦定理,基本不等式可求cosA最小值为 .(2)由(1)知 ,且b2+c2=2a2=8≥2bc,可求bc≤4,进而利用三角形面积公式即可计算得解.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的对边分别是a,b,c,且a,b,c成等比数列,求f(B)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在D上的函数,若存在区间[m,n]D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:①f(x)=3﹣ 不可能是k型函数; ②若函数y=﹣ x2+x是3型函数,则m=﹣4,n=0;
③设函数f(x)=x3+2x2+x(x≤0)是k型函数,则k的最小值为
④若函数y= (a≠0)是1型函数,则n﹣m的最大值为
下列选项正确的是(
A.①③
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若过定点M(﹣1,0)且斜率为k的直线与圆x2+4x+y2﹣5=0在第一象限内的部分有交点,则k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为 ,则三棱锥P﹣ABC的外接球的表面积为( )
A.4π
B.8π
C.16π
D.32π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的离心率为 ,过焦点垂直长轴的弦长为3.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作直线交抛物线y2=2x于A、B两点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax2+bx(a>0,b>0)在点(1,f(1))处的切线斜率为2,则 的最小值是(
A.10
B.9
C.8
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.

问:
(1)折起后形成的几何体是什么几何体?
(2)这个几何体共有几个面,每个面的三角形有何特点?
(3)每个面的三角形面积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x3 x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求b,c的值;
(2)若a>0,求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案