精英家教网 > 高中数学 > 题目详情
已知有关正三角形的一个结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC内切圆的圆心,则
AG
GD
=2”.若把该结论推广到正四面体(所有棱长均相等的三棱锥),则有结论:“在正四面体ABCD中,若M是正三角形BCD的中心,O是在正四面体ABCD内切球的球心,则
AO
OM
=
3
3
”.
分析:类比平面几何结论,推广到空间,则有结论:“
AO
OM
=3”.设正四面体ABCD边长为1,易求得AM=
6
3
,又O到四面体各面的距离都相等,所以O为四面体的内切球的球心,设内切球半径为r,则有r=
3V
S
,可求得r即OM,从而可验证结果的正确性.
解答:解:推广到空间,则有结论:“
AO
OM
=3”.
设正四面体ABCD边长为1,易求得AM=
6
3
,又O到四面体各面的距离都相等,
所以O为四面体的内切球的球心,设内切球半径为r,
则有r=
3V
S
,可求得r即OM=
6
12

所以AO=AM-OM=
6
4
,所以 
AO
OM
=3.
故答案为:3
点评:本题考查类比推理、几何体的结构特征、体积法等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α是△ABC的一个内角,且cosa=-
12
13
,则
sin2a
cos2a
=
-
5
6
-
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的一个焦点为F(
1
2
,0)
,其准线方程为x=-
1
2

(1)写出抛物线C的方程;
(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的一个方向向量为
a
=(-2,3)
,则直线l的斜率为
 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省徐州市高二(下)期末数学试卷(文科)(解析版) 题型:填空题

已知有关正三角形的一个结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC内切圆的圆心,则=2”.若把该结论推广到正四面体(所有棱长均相等的三棱锥),则有结论:“在正四面体ABCD中,若M是正三角形BCD的中心,O是在正四面体ABCD内切球的球心,则=    ”.

查看答案和解析>>

同步练习册答案