精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=|x-1|+|x-2|,记f(x)的最小值为k.
(1)解不等式:f(x)≤x+1;
(2)是否存在正数a、b,同时满足:2a+b=k,$\frac{1}{a}$+$\frac{2}{b}$=4?若存在,求出a、b的值,若不存在,请说明理由.

分析 (1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)利用绝对值三角不等式求得k的值,若2a+b=k=1,$\frac{1}{a}$+$\frac{2}{b}$=4,可得2a2-a+4=0,由于△=-31<0,故此方程无解,故不存在正数a、b,同时满足:2a+b=k,$\frac{1}{a}$+$\frac{2}{b}$=4.

解答 解:(1)∵函数f(x)=|x-1|+|x-2|,不等式 f(x)≤x+1,即|x-1|+|x-2|≤x+1,
∴$\left\{\begin{array}{l}{x<1}\\{1-x+2-x≤x+1}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{1≤x≤2}\\{x-1+2-x≤x+1}\end{array}\right.$ ②,或 $\left\{\begin{array}{l}{x>2}\\{x-1+x-2≤x+1}\end{array}\right.$③.
解①求得$\frac{2}{3}$≤x<1,解②求得1≤x≤2,解③求得2<x≤4,
综上可得不等式的解集为{x|$\frac{2}{3}$≤x≤4}.
(2)∵f(x)=|x-1|+|x-2|≥|(x-1)-(x-2)|=1,当且仅当1≤x≤2时,取等号,故f(x)的最小值为k=1.
若2a+b=k=1,$\frac{1}{a}$+$\frac{2}{b}$=4,则 $\frac{2a+b}{ab}$=$\frac{1}{ab}$=4,即ab=a(1-2a)=a-2a2=4,
化简可得,2a2-a+4=0,由于△=-31<0,故此方程无解,
故不存在正数a、b,同时满足:2a+b=k,$\frac{1}{a}$+$\frac{2}{b}$=4.

点评 本题主要考查绝对值三角不等式的应用,解绝对值不等式,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知数列{an}各项均为正数,其前n项和为Sn,且满足$4{S_n}=a_n^2+2{a_n}({n∈{N^*}})$,则an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a为实数,函数$f(x)=1-\frac{a}{{{2^x}+1}}$.
(1)若f(-1)=-1,求a的值;
(2)是否存在实数a,使得f(x)为奇函数;
(3)若函数f(x)在其定义域上存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆x2+y2-2x+4y-3=0上的点到直线x-y+5=0的距离的取值范围为(2$\sqrt{2}$,6$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个四面体的三视图如图所示,则该四面体的外接球的表面积为(  )
A.$\frac{4π}{3}$B.C.$\frac{2π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输出的x值为31,则a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合A={x|x<-$\frac{1}{2}$或x>1},B={x|-1≤x≤2,x∈Z},则图中阴影部分所表示的集合等于(  )
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$({1,\frac{{\sqrt{2}}}{2}})$,其离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若直线y=x+m与C相交于A,B两点,∠AOB(O为坐标原点)为钝角,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|x|+$\frac{m}{x}$-2(x≠0).
(1)当m=2时,判断f(x)在(-∞,0)的单调性,并用定义证明;
(2)若f(2x)>0对x∈R恒成立,求m的取值范围;
(3)讨论f(x)零点的个数.

查看答案和解析>>

同步练习册答案