精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系xOy中,曲线C的方程为x2-2x+y2=0,以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=$\frac{π}{4}$(ρ∈R).
(Ⅰ)写出C的极坐标方程,并求l与C的交点M,N的极坐标;
(Ⅱ)设P是椭圆$\frac{{x}^{2}}{3}$+y2=1上的动点,求△PMN面积的最大值.

分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ写出C的极坐标方程,并求l与C的交点M,N的极坐标;
(Ⅱ)设P点坐标为($\sqrt{3}$cosθ,sinθ),则P到直线y=x的距离d=$\frac{|\sqrt{3}cosθ-sinθ|}{\sqrt{2}}$,利用三角形的面积公式,可得结论.

解答 解:(Ⅰ)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,(2分)
直线l的直角坐标方程为y=x,
联立方程组$\left\{\begin{array}{l}{y=x}\\{{x}^{2}-2x+{y}^{2}=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,(4分)
所以点M,N的极坐标分别为(0,0),($\sqrt{2}$,$\frac{π}{4}$).(5分)
(Ⅱ)由(Ⅰ)易得|MN|=$\sqrt{2}$ (6分)
因为P是椭圆$\frac{{x}^{2}}{3}$+y2=1上的点,设P点坐标为($\sqrt{3}$cosθ,sinθ),(7分)
则P到直线y=x的距离d=$\frac{|\sqrt{3}cosθ-sinθ|}{\sqrt{2}}$,(8分)
所以S△PMN=$\frac{1}{2}|MN|d$=$\frac{|2cos(θ+\frac{π}{6})|}{2}$≤1,(9分)
当θ=kπ-$\frac{π}{6}$,k∈Z时,S△PMN取得最大值1.(10分)

点评 本小题考查直角坐标方程、参数方程、极坐标方程的相互转化,考查化归与转化思想,数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(文科学生做)已知函数f(x)=tanx-sinx,x∈(-$\frac{π}{2},\frac{π}{2}$).
(1)比较f(-$\frac{π}{3}$),f(-$\frac{π}{4}$),f($\frac{π}{4}$),f($\frac{π}{3}$)与0的大小关系;
(2)猜想f(x)的正负,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,面ABB1A为矩形,$AB=BC=1,A{A_1}=\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,BC⊥AB1
(1)证明:CD⊥AB1
(2)若$OC=\frac{{\sqrt{3}}}{3}$,求二面角A-BC-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.
(1)求证:AF=FO;
(2)若CF=$\sqrt{3}$,求AD•AE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ln(x+a)(a∈R).
(Ⅰ)曲线y=f(x)在点(1,f(1))处的切线与直线x-2y+1=0平行,求a的值;
(Ⅱ)当a=0时,若函数g(x)=f(x)+$\frac{1}{2}$x2-mx(m≥$\frac{5}{2}$)的极值点x1,x2(x1<x2)恰好是函数h(x)=f(x)-cx2-bx的零点,求y=(x1-x2)h′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,∠A=2∠B,∠C的平分线交AB于点D,∠A的平分线交CD于点E.求证:AD•BC=BD•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的函数f(x)满足f(1)=1,且对于任意的xf′(x)$<\frac{1}{2}$恒成立,则不等式f(lg2x)<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$的解集为$(0,\frac{1}{10})∪(10,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数y=2x3-6x2+m在区间[-2,2]上有最大值3,求它的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如表的统计资料:
使用年限x12345
维修费用y567810
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;

(2)请根据最小二乘法求出线性回归方程$\hat y$=bx+a的回归系数a,b;
(3)估计使用年限为6年时,维修费用是多少?

查看答案和解析>>

同步练习册答案