精英家教网 > 高中数学 > 题目详情

【题目】一个圆锥的体积为,当这个圆锥的侧面积最小时,其母线与底面所成角的正切值为( )

A. B. C. D.

【答案】D

【解析】

首先设圆锥的底面半径为,高为,从而求得圆锥的母线长为,利用圆锥的体积公式以及题中的条件,得到,将圆锥的侧面积表示出来,之后设,利用导数求得当取得最小值,从而求得圆锥的侧面积取得最小值时,此时,进而求得圆锥的母线与底面所成角的正切值为,从而求得结果.

设圆锥的底面半径为,高为

所以圆锥的母线长为

所以圆锥的体积为

所以

因为圆锥的侧面积

所以

所以当时,

此时单调递增,

时,

此时单调递减,

所以当取得最小值,

即圆锥的侧面积取得最小值,

所以

所以圆锥的母线与底面所成角的正切值为

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点上且其横坐标为1,以为圆心、为半径的圆与的准线相切.

(1)求的值;

(2)过点的直线交于两点,以为邻边作平行四边形,若点关于的对称点在上,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥M-ABCD中,MB⊥平面ABCD,四边形ABCD是矩形,AB=MB,E、F分别为MA、MC的中点.

(1)求证:平面BEF⊥平面MAD;

(2)若,求三棱锥E-ABF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,是抛物线上异于的两点.

(1)求抛物线的方程;

(2)若直线的斜率之积为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】能够使得命题“曲线上存在四个点满足四边形是正方形”为真命题的一个实数的值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线上任意一点Px轴作垂线段,垂足为Q,点M是线段上的一点,且满足

(1)求点M的轨迹C的方程;

(2)设直线与轨迹c交于两点,TC上异于的任意一点,直线分别与直线交于两点,以为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,且.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.若直线ab与平面所成角都是30°,则这两条直线平行

B.若直线a与平面、平面所成角相等,则

C.若平面内不共线三点到平面的距离相等,则

D.已知二面角的平面角为120°Pl上一定点,则一定存在过点P的平面,使所成锐二面角都为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,把函数的图象向右平移个单位,再把图象上各点的横坐标缩小到原来的一半,纵坐标不变,得到函数的图象,当时,方程恰有两个不同的实根,则实数的取值范围为(

A. B. C. D.

查看答案和解析>>

同步练习册答案