【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.数据表明,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组比第七组少1人.
(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x,y,求满足“|x﹣y|≤5”的事件的概率.
【答案】
(1)解:由频率分布直方图得身高在180cm以上(含180cm)为最后三组,
则最后三组频率为(0.016+0.012+0.008)×5=0.18,
这所学校高三年级全体男生身高在180cm以上(含180cm)的人数为800×0.18=144
(2)解:由已知得身高在[180,185)内的人数为4,设为a、b、c、d,
身高在[190,195]内的人数为2,设为A、B,
若x,y∈[180,185)时,有ab、ac、ad、bc、bd、cd共6种情况;
若x,y∈[190,195]时,有AB共1种情况;
若x,y分别在[180,185)和[190,195]内时,有aA、bA、cA、dA、aB、bB、cB、dB,共8种情况.
所以,基本事件总数为6+1+8=15,
事件“|x﹣y|≤5”即取出两人在同一组,其所包含的基本事件个数有6+1=7,
所以P(|x﹣y|≤5)=
【解析】(1)由频率分布直方图得身高在180cm以上(含180cm)为最后三组,计算可得最后三组的频率,又由全校高三的总人数,计算可得高三年级全体男生身高在180cm以上人数;(2)根据题意,分析可得身高在[180,185)内的人数为4,设为a、b、c、d,身高在[190,195]内的人数为2,设为A、B,分类列举从6人中取出2人的情况,分析可得基本事件总数与事件“|x﹣y|≤5”所包含的基本事件数目,由古典概型公式,计算可得答案
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求证:bn+1=4bn;
(2)求数列{an}的通项公式;
(3)若a1+2a2+3a3+…+nan>λ2n对一切正整数n恒成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂为了解甲、乙两条生产线生产的产品的质量,从两条生产线生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:
规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品.
(1)根据样本数据,计算甲、乙两条生产线产品质量的均值与方差,并说明哪条生产线的产品的质量相对稳定;
(2)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2+aln(x+1).
(1)求函数f(x)的单调区间;
(2)若函数F(x)=f(x)+ln 有两个极值点x1 , x2且x1<x2 , 求证F(x2)> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣ 存在单调递减区间,且y=f(x)的图象在x=0处的切线l与曲线y=ex相切,符合情况的切线l( )
A.有3条
B.有2条
C.有1条
D.不存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:y=x+1,圆O: ,直线l被圆截得的弦长与椭圆C: 的短轴长相等,椭圆的离心率e= .
(1)求椭圆C的方程;
(2)过点M(0, )的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , a1= ,且对于任意正整数m,n都有an+m=anam . 若Sn<a对任意n∈N*恒成立,则实数a的最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com