精英家教网 > 高中数学 > 题目详情
4.若存在x∈[2,3],使不等式$\frac{1+ax}{x•{2}^{x}}$≥1成立,则实数a的最小值为$\frac{7}{2}$.

分析 由已知得a≥2x-$\frac{1}{x}$,令y=2x-$\frac{1}{x}$,由导数性质得到y=2x-$\frac{1}{x}$,在[2,3]上是增函数,由此能求出实数a的最小值.

解答 解:∵存在x∈[2,3],使不等式$\frac{1+ax}{x•{2}^{x}}$≥1成立,
∴1+ax≥x•2x,即a≥2x-$\frac{1}{x}$,
令y=2x-$\frac{1}{x}$,则y′=2xln2+$\frac{1}{{x}^{2}}$>0,
∴y=2x-$\frac{1}{x}$,在[2,3]上是增函数,
∴当x=2时,y取得最小值,ymin=22-$\frac{1}{2}$=$\frac{7}{2}$,
∴a≥$\frac{7}{2}$,即实数a的最小值为$\frac{7}{2}$.
故答案为:$\frac{7}{2}$.

点评 本题考查实数的最小值的求法,是基础题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知P为单位圆上任一点,若存在定点M,使得直线PM的斜率取值范围为[0,$\sqrt{3}$],则该定点M的坐标为(-$\sqrt{3}$,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式:$\frac{2x-3}{x+7}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)=-x3+3x+1在区间(a2-6,a)上有最大值.则实数a的取值范围为[2,$\sqrt{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=x2-4x-2在闭区间[0,m]上有最大值-2,最小值-6,则m的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(-5,2),B(0,-3),则直线AB斜率为(  )
A.-1B.1C.$\frac{1}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.命题p:“函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a-$\frac{3}{4}$)x+1在R上既有增区间又有减区间”,命题q:“不等式ax2+2ax+1>0对一切实数x都成立”,若“p或q”与“非q”同时为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}与{bn}满足:a1=1,bn=$\frac{3+(-1)^{n}}{2}$且anbn+1+an+1bn=1+(-2)n
(1)求a2,a3的值:
(2)令ck=a2k+1-a2k-1,k∈N*,证明:{ck}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有(  )
A.24种B.48种C.36种D.28种

查看答案和解析>>

同步练习册答案