精英家教网 > 高中数学 > 题目详情

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(1) 求图中的值;

(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量,求的分布列和数学期望.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:

(1)利用频率分布直方图的面积为1得到关于 的方程,解方程即可求得实数 的值;

(2)首先确定该分布列为超几何分布,然后写出分布列求解均值即可.

试题解析:

(Ⅰ)由,解得

(Ⅱ)满意度评分值在[90,100]内有人,

其中男生6人,女生3人.

X的值可以为0,1,2,3.

X分布列如下:

X

0

1

2

3

P

所以X的期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为 为原点, 轴上的两个动点,且,直线分别与椭圆交于 两点.

 

(Ⅰ)求的面积的最小值;

(Ⅱ)证明: 三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)讨论函数的单调性;

)若函数上有最小值,且最小值为,满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别求出适合下列条件的直线方程:
(Ⅰ)经过点且在x轴上的截距等于在y轴上截距的2倍;
(Ⅱ)经过直线2x+7y﹣4=0与7x﹣21y﹣1=0的交点,且和A(﹣3,1),B(5,7)等距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面△ABC是等边三角形,侧面为正方形,且平面ABC 为线段上的一点.

(Ⅰ) 若∥平面A1CD,确定D的位置,并说明理由;

(Ⅱ) 在(Ⅰ)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,x∈R,且f(x)为奇函数. (I)求a的值及f(x)的解析式;
(II)判断函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的定义域为集合A,y=﹣x2+2x+2a的值域为B.
(1)若a=2,求A∩B
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形, 底面 分别是的中点.

(1)在图中画出过点的平面,使得平面(须说明画法,并给予证明);

(2)若过点的平面平面且截四棱锥所得截面的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出直线的极坐标方程与曲线的直角坐标方程;

(2)已知与直线平行的直线过点,且与曲线交于两点,试求

查看答案和解析>>

同步练习册答案