精英家教网 > 高中数学 > 题目详情

【题目】某建筑公司打算在一处工地修建一座简易储物间.该储物间室内地面呈矩形形状,面积为,并且一面紧靠工地现有围墙,另三面用高度一定的矩形彩钢板围成,顶部用防雨布遮盖,其平面图如图所示.已知该型号彩钢板价格为100/米,整理地面及防雨布总费用为500元,不受地形限制,不考虑彩钢板的厚度,记与墙面平行的彩钢板的长度为.

1)用表示修建储物间的总造价(单位:元);

2)如何设计该储物间,可使总造价最低?最低总造价为多少元?

【答案】12)与墙面平行的彩钢板长度为10米,另两边长度为5米,可使储物间总造价最低,最低总造价为2500

【解析】

1)首先求出彩钢板的长度,根据总造价彩钢长度整理地面及防雨布总费用,即可求解.

2)利用基本不等式即可求解.

解:(1)由题意,建造储物间所需彩钢板总长度为米,

.

2.

当且仅当时等号成立.

此时.

与墙面平行的彩钢板长度为10米,另两边长度为5米,

可使储物间总造价最低,最低总造价为2500.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心Mx轴上,半径为,直线被圆M截得的弦长为,且圆心M在直线l的上方.

1)求圆的方程;

2)设,若圆M的内切圆,求ACBC边所在直线的斜率(用t表示);

3)在(2)的条件下求的面积S的最大值及对应的t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,解答下列问题:

(1)求输入的的值分别为时,输出的的值;

(2)根据程序框图,写出函数)的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数R上的单调增函数,求实数a的取值范围;

2)设 的导函数.

①若对任意的,求证:存在使

②若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示,则函数图象的一个对称中心可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·金华调研)如图,ABBEBC2AD2,且ABBEDAB60°ADBCBEAD.

(1)求证:平面ADE⊥平面BDE

(2)求直线AD与平面DCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 ()的一个焦点为椭圆内一点,若椭圆上存在一点,使得,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆上的动点T满足:线段TQ的垂直平分线与线段TP相交于点K

求点K的轨迹C的方程;

经过点的斜率之积为的两条直线,分别与曲线C相交于MN两点,试判断直线MN是否经过定点若是,则求出定点坐标;若否,则说明理由.

查看答案和解析>>

同步练习册答案