精英家教网 > 高中数学 > 题目详情
2.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(1)若直线AB过焦点F,求抛物线C的方程;
(2)若QA⊥QB,求p的值.

分析 (1)根据题意,求出直线2x-y+2=0与y轴的交点坐标,即可得抛物线焦点坐标,进而可得抛物线的方程;
(2)联立直线与抛物线的方程,可得x2-4px-4p=0,设A(x1,y1),B(x2,y2),将QA⊥QB转化为$\overrightarrow{QA}•\overrightarrow{QB}=0$,由根与系数的关系分析可得$5{x_1}{x_2}+(4-6p)({x_1}+{x_2})+8{p^2}-8p+4=0$,代入得4p2+3p-1=0,解可得答案.

解答 解:(1)根据题意,直线2x-y+2=0与y轴的交点为(0,2),
则F(0,2),
∴抛物线C的方程为x2=8y;
(2)由 $\left\{\begin{array}{l}y=2x+2\\{x^2}=2py\end{array}\right.$得:x2-4px-4p=0,
设A(x1,y1),B(x2,y2),则x1+x2=4p,x1x2=-4p,
∴Q(2p,2p),∵QA⊥QB,则$\overrightarrow{QA}•\overrightarrow{QB}=0$,
(x1-2p)(x2-2p)+(y1-2p)(y2-2p)=0,
(x1-2p)(x2-2p)+(2x1+2-2p)(2x2+2-2p)=0,
$5{x_1}{x_2}+(4-6p)({x_1}+{x_2})+8{p^2}-8p+4=0$,
代入得4p2+3p-1=0,解得$p=\frac{1}{4}$或p=-1(舍去)
∴$p=\frac{1}{4}$.

点评 本题考查直线与抛物线的位置关系,关键是由抛物线焦点坐标求出抛物线的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图所示,已知P是?ABCD所在平面外一点,M,N分别是AB,PC的中点,平面PAD∩平面PBC=l.
求证:(1)l∥BC.
(2)MN∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(理科)如图,在空间四面体ABCD中,若E,F,G,H分别是AB,BD,CD,AC的中点,且AD⊥BC
(1)求证:四边形EFGH是矩形.
(2)求证:AD∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为(  )
A.28πB.$\frac{{28\sqrt{7}π}}{3}$C.32πD.$\frac{{64\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线的方程为y=3x,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要得到y=cos2x-1的图象,只需将函数y=sin2x的图象(  )
A.向右平移$\frac{π}{4}$个单位,再向上平移1个单位
B.向左平移$\frac{π}{4}$个单位,再向下平移1个单位
C.向右平移$\frac{π}{2}$个单位,再向上平移1个单位
D.向左平移$\frac{π}{2}$个单位,再向下平移1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设F1,F2分别是椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2作倾斜角为$\frac{π}{3}$的直线交椭圆D于A,B两点,F1到直线AB的距离为2$\sqrt{3}$,连接椭圆D的四个顶点得到的菱形面积为2$\sqrt{5}$.
(1)求椭圆D的方程;
(2)设过点F2的直线l被椭圆D和圆C:(x-2)2+(y-2)2=4所截得的弦长分别为m,n,当m•n最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程x-log${\;}_{\frac{1}{2}}$x=3和x-log${\;}_{\frac{1}{3}}$x=3的根分别为α,β,则有(  )
A.α<βB.α>β
C.α=βD.无法确定α与β大小

查看答案和解析>>

同步练习册答案