精英家教网 > 高中数学 > 题目详情
16.已知一元二次不等式f(x)>0的解集为{x|x<-1或x>$\frac{1}{2}$},则f(10x)>0的解集为(  )
A.{x|x<-1或x>lg2}B.{x|-1<x<lg2}C.{x|x>-lg2}D.{x|x<-lg2}

分析 根据不等式f(x)>0的解集把f(10x)>0化为10x<-1或10x>$\frac{1}{2}$,求出解集即可.

解答 解:一元二次不等式f(x)>0的解集为{x|x<-1或x>$\frac{1}{2}$},
则不等式f(10x)>0可化为10x<-1或10x>$\frac{1}{2}$,
解得x>lg$\frac{1}{2}$,即x>-lg2;
所以所求不等式的解集为{x|x>-lg2}.
故选:C.

点评 本题考查了不等式解集以及指数不等式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\frac{1-x}{x}+lnx$,f'(x)为f(x)的导函数,则f'(2)的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为$\frac{6}{7}$,则口袋中白球的个数为(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设X是一个离散型随机变量,其分布列为:
X-101
P$\frac{1}{2}$1-qq2-q
则q等于(  )
A.1B.1±$\frac{{\sqrt{2}}}{2}$C.1-$\frac{{\sqrt{2}}}{2}$D.1+$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.随机变量ε的分布列为
ε135
p0.50.30.2
则其期望等于(  )
A.1B.$\frac{1}{3}$C.4.5D.2.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=log4$\sqrt{x}$•log${\;}_{\sqrt{2}}$(2x)的值域用区间表示为[-$\frac{1}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“△OAB的面积为$\frac{1}{2}$”是“k=1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(Ⅰ)当a=1时,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)当a>0时,试讨论函数g(x)的单调性;
(Ⅲ)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2)(x1<x2),证明:$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数$\frac{1+2i}{2-i}$化简是(  )
A.$\frac{3i}{5}$B.$-\frac{3i}{5}$C.iD.-i

查看答案和解析>>

同步练习册答案