精英家教网 > 高中数学 > 题目详情

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

【答案】①③④⑦

【解析】分析:根据线性回归分析的概念进行分析即可.

详解:在线性回归模型中,相关指数越接近于1,表示回归效果越好,①正确;两个变量相关性越强,则相关系数r的绝对值就越接近于1,②错误;③正确;两个模型中残差平方和越小的模型拟合的效果越好,④正确;回归直线恒过样本点的中心,这一定过样本点,⑤错误;若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,并不能说在100个吸烟的人中必有99人患有肺病,⑥错误;从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误,⑦正确.

故答案为①③④⑦.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .

1)求直线和曲线的普通方程;

2)已知点,且直线和曲线交于两点,求 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中直线与抛物线C交于AB两点,且

C的方程;

D为直线外一点,且的外心MC上,求M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆,如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.

(1)求的最小值;

(2)若,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为常数且.新定义:若满足则称的回旋点.

1)当时,分别求的值;

2)当时,求函数的解析式,并求出回旋点;

3)证明函数有且仅有两个回旋点,并求出回旋点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的有(

①在回归分析中,可以借助散点图判断两个变量是否呈线性相关关系.

②在回归分析中,可以通过残差图发现原始数据中的可疑数据,残差平方和越小,模型的拟合效果越好.

③在回归分析模型中,相关系数的绝对值越大,说明模型的拟合效果越好.

④在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面为等腰梯形,分别是的中点.

1)证明:直线平面

2)求直线与面所成角的大小;

3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在学生甲和乙都不是第一个出场,且甲不是最后一个出场的前提下,学生丙第一个出场的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线过点

(Ⅰ)求双曲线的方程;

(Ⅱ)设直线与双曲线C交于AB两点,试问:k为何值时,

查看答案和解析>>

同步练习册答案