精英家教网 > 高中数学 > 题目详情
已知函数f(x)=exkx2x∈R.
(1)若k,求证:当x∈(0,+∞)时,f(x)>1;
(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值范围;
(3)求证:<e4(n∈N*)..
(1)见解析(2)(3)见解析
(1)证明 f(x)=exx2,则h(x)=f′(x)=exx
h′(x)=ex-1>0(x>0),∴h(x)=f′(x)在(0,+∞)上单调递增,∴f′(x)>f′(0)=1>0.∴f(x)=exx2在(0,+∞)上单调递增,故f(x)>f(0)=1.
(2)解 f′(x)=ex-2kx,求使f′(x)>0(x>0)恒成立的k的取值范围.
k≤0,显然f′(x)>0,f(x)在区间(0,+∞)上单调递增,当k>0时,记φ(x)=ex-2kx,则φ′(x)=ex-2k,当0<k<时,∵ex>e0=1,而2k<1,∴φ′(x)>0,则φ(x)在(0,+∞)上单调递增,于是f′(x)=φ(x)>φ(0)=1>0,∴f(x)在(0,+∞)单调递增;当k时,φ(x)=ex-2kx在(0,ln 2k)上单调递减,在(ln 2k,+∞)上单调递增,于是f′(x)=φ(x)=φ(ln 2k)=eln 2k-2kln 2k,由eln 2k-2kln 2k≥0得2k-2kln 2k≥0,则k.综上,k的取值范围是.
(3)证明 由(1)知,对于x∈(0,+∞),有f(x)=exx2>1,∴e2x>2x2+1,则ln (2x2+1)<2x
从而有ln < (n∈N*),
于是ln +ln +ln +…+ln <+…+<+…+=2+=4-<4,故··…·<e4(n∈N*)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=+a,g(x)=aln x-x(a≠0).
(1)求函数f(x)的单调区间;
(2)求证:当a>0时,对于任意x1,x2,总有g(x1)<f(x2)成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数存在极大值和极小值,求的取值范围;
(2)设分别为的极大值和极小值,其中的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设函数的极值.
(2)证明:上为增函数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的极值点;
(2)对任意的,记上的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x3+ax2+bx+a2在x=1处有极值为10,则a+b=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2tx-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[nn+2](n>0)上的最小值;
(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,求(   )
A.B.5C.4D.3

查看答案和解析>>

同步练习册答案