精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,点与抛物线的焦点关于原点对称,动点到点的距离与到点的距离之和为4.

(1)求动点的轨迹;

(2)若,设过点的直线的轨迹相交于两点,当的面积最大时,求直线的方程.

【答案】(1)详见解析(2)

【解析】

(1)先求的坐标,若,则动点的轨迹不存在;若,则动点的轨迹为线段;若,则动点的轨迹为椭圆.

(2)直线的斜率必存在,可先联立直线方程和椭圆的方程,消元后利用韦达定理可求的长,再求出到直线的距离后可得面积表达式,最后利用基本不等式可得面积何时最大并能求出此时直线的方程.

(1)①当时,的轨迹不存在.

②当时,的轨迹为一线段,方程为

③当时,的轨迹为焦点在轴上的椭圆,方程为.

(2)若,则的轨迹方程为 .

轴时不合题意, 故设.

代入.

解得.

由韦达定理得

.

又点到直线的距离,

,其中.

,则

当且仅当,时等号成立,

所以,当的面积最大时,的方程为.

方法二:若,则的轨迹方程为.

轴时不合题意, 故设,且.

代入.

解得.

由韦达定理得

,则

当且仅当,时等号成立,

所以,当的面积最大时,的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种饮料,每天进货量相同,进货成本每瓶3元,售价每瓶5元,每天未售出的饮料最后打4折当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为100瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:

最高气温

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

求六月份这种饮料一天的需求量单位:瓶的分布列,并求出期望EX;

设六月份一天销售这种饮料的利润为单位:元,且六月份这种饮料一天的进货量为单位:瓶,请判断Y的数学期望是否在时取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为全面推进新课程改革,在高一年级开设了研究性学习课程,某班学生在一次研究活动课程中,一个小组进行一种验证性实验,已知该种实验每次实验成功的概率为

求该小组做了5次这种实验至少有2次成功的概率.

如果在若干次实验中累计有两次成功就停止实验,否则将继续下次实验,但实验的总次数不超过5次,求该小组所做实验的次数的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足对任意,都有成立,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)

查看答案和解析>>

同步练习册答案