精英家教网 > 高中数学 > 题目详情
1.在数列{an}中,已知a1=1,an+1=$\frac{{a}_{n}}{m•{a}_{n}+1}$(m是常数,n∈N*),a1,a2,a5成公比不等于1的等比数列.
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设bn=an•an+1,数列{bn}前n项和为Sn,求证:Sn<$\frac{1}{2}$.

分析 (1)通过对an+1=$\frac{{a}_{n}}{m•{a}_{n}+1}$取倒数、整理可知$\frac{1}{{a}_{n+1}}$=m+$\frac{1}{{a}_{n}}$,进而可知数列{$\frac{1}{{a}_{n}}$}是以1为首项、m为公差的等差数列;
(2)通过(1)可知$\frac{1}{{a}_{n}}$=mn-m+1,利用a1,a2,a5成公比不等于1的等比数列,计算可知m=2,进而可知$\frac{1}{{a}_{n}}$=2n-1,从而可得结论;
(3)通过(2)、裂项可知bn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加即得结论.

解答 (1)证明:∵an+1=$\frac{{a}_{n}}{m•{a}_{n}+1}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{m•{a}_{n}+1}{{a}_{n}}$=m+$\frac{1}{{a}_{n}}$,
又∵$\frac{1}{{a}_{1}}$=$\frac{1}{1}$=1,
∴数列{$\frac{1}{{a}_{n}}$}是以1为首项、m为公差的等差数列;
(2)解:由(1)可知$\frac{1}{{a}_{n}}$=1+m(n-1)=mn-m+1,
又∵a1,a2,a5成公比不等于1的等比数列,
∴${{a}_{2}}^{2}$=a1•a5
∴$(\frac{1}{{a}_{2}})^{2}$=$\frac{1}{{a}_{1}}$•$\frac{1}{{a}_{5}}$,
∴(m+1)2=1•(4m+1),
解得:m=2或m=0(舍),
∴$\frac{1}{{a}_{n}}$=2n-1,
∴数列{an}的通项公式an=$\frac{1}{2n-1}$;
(3)证明:由(2)可知bn=an•an+1=$\frac{1}{2n-1}$•$\frac{1}{2n+1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
<$\frac{1}{2}$.

点评 本题考查等差数列的判定,数列的通项及数列的求和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{1}{2}$,过焦点F1的直线l交椭圆于A、B两点,且△ABF2的周长为8.
(1)求椭圆C的方程;
(2)连接AO并延长交椭圆C于点Q,求△ABQ面积的最大值.并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知 $\frac{cos2α}{cosα[1+tan(-α)]}$=$\frac{1}{2}$则sin2α等于(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函敌f(x)=ax2+bx|x|+cx+d,(x∈R)其中a、b、c、d是常数
(1)若f(0)=0,试问f(x)是否-定是奇函数,证明你的结论;
(2)若a=2,b=1,求函数f(x)的值域;
(3)已知当x≥0时,y=f(x)的图象可由y=2x(x≥0)的图象向上平移而得到.x∈[一1,0]时,函数y=f(x)的图象关于直线x=-$\frac{1}{2}$对称.试求出函数y=f(x)(x∈R)的单调增减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.有一个容量为50的样本,其数据的茎叶图如图所示,将其分成7个组并要求:
(1)列出样本的频率分布图;
(2)画出频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆x2+4y2=m上两点间的最大距离是8.则实数m的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若sinA=$\frac{1}{3}$,A+B=30°,BC=4,则AB=(  )
A.24B.6$\sqrt{3}$C.2$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,an>0(n∈N*),其前n项和为Sn.若数列{an}是一个首项为a,公比为q的等比数列,且Gn=a12+a22+…+an2,请证明数列{an2}也是等比数列,并求$\frac{{S}_{n}}{{G}_{n}}$的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a+b=2$\sqrt{3}$,ab=2,2cos(A+B)=1.
(1)求角C;
(2)求c的长;
(3)求△ABC的面积.

查看答案和解析>>

同步练习册答案