【题目】在平面直角坐标系xOy中,点A(0,﹣3),点M满足|MA|=2|MO|.
(1)求点M的轨迹方程;
(2)若圆C:(x﹣c)2+(y﹣c+1)2=1,判断圆C上是否存在符合题意的M;
(3)设P(x1,y1),Q(x2,y2)是点M轨迹上的两个动点,点P关于点(0,1)的对称点为P1,点P关于直线y=1的对称点为P2,如果直线QP1,QP2与y轴分别交于(0,a)和(0,b),问(a﹣1)(b﹣1)是否为定值?若是,求出该定值;若不是,请说明理由.
【答案】(1)x2+(y﹣1)2=4(2)存在(3)是定值,定值为
【解析】
(1)设,由代入可求的轨迹方程;(2)由已知可得圆心,圆与的轨迹有公共点,则可求的范围;(3)设,,可求,,进而可求,的表达式,即可求解.
(1)设M(x,y),由|MA|=2|MO|可得x2+(y+3)2=4(x2+y2)
化简可得M的轨迹方程为x2+(y﹣1)2=4
(2)由已知可得圆心C(c,c﹣1),
若圆C与M的轨迹有公共点,则
解可得:
即时存在满足条件的M.
(3)∵P(x1,y1),
∴P1(﹣x1,2﹣y1),P2(x1,2﹣y1),
由题意可得,直线QP1,QP2的斜率一定存在且不为0,否则a或b不存在
∴QP1:y﹣y2,
∴,b
∴(a﹣1)(b﹣1)(1)
∵,.
∴(a﹣1)(b﹣1)4.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)与g(x)=3elnx+mx的图象有4个不同的交点,则实数m的取值范围是( )
A.(﹣3,)B.(﹣1,)C.(﹣1,3)D.(0,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线C:(y﹣1)2﹣x2=1交于A,B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为,求点P到线段AB中点M的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】的三个内角,,所对的边分别为,,,.
(1)求的大小;
(2)若为锐角三角形,求函数的取值范围;
(3)现在给出下列三个条件:①;②;③,试从中再选择两个条件以确定,求出所确定的的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),经过变换后曲线变换为曲线.
(1)在以为极点,轴的非负半轴为极轴(单位长度与直角坐标系相同)的极坐标系中,求的极坐标方程;
(2)求证:直线与曲线的交点也在曲线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,均为各项都不相等的数列,为的前n项和,.
若,求的值;
若是公比为的等比数列,求证:数列为等比数列;
若的各项都不为零,是公差为d的等差数列,求证:,,,,成等差数列的充要条件是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com