精英家教网 > 高中数学 > 题目详情

【题目】已知向量 与向量 =(2,﹣1,2)共线,且满足 =18,(k + )⊥(k ),求向量 及k的值.

【答案】解:∵ 共线,∴存在实数λ,使
2=λ| |2 , 解得λ=2.
=2 =(4,﹣2,4).
∵(k + )⊥(k ),
∴(k + )(k )=(k +2 )(k ﹣2 )=0,
即(k2﹣4)| |2=0,
解得k=±2
【解析】由已知得存在实数λ,使 ,由此能求出 =2 =(4,﹣2,4).由(k + )⊥(k ),得(k2﹣4)| |2=0,由此能求出k=±2.
【考点精析】关于本题考查的数量积判断两个平面向量的垂直关系,需要了解若平面的法向量为,平面的法向量为,要证,只需证,即证;即:两平面垂直两平面的法向量垂直才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是公差为正数的等差数列,其前项和为,且

(1)求数列的通项公式;

(2)数列满足 .①求数列的通项公式;②是否存在正整数 ),使得 成等差数列?若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右顶点分别为,上、下顶点分别为两个焦点分别为 四边形的面积是四边形的面积的2.

1求椭圆的方程;

2过椭圆的右焦点且垂直于轴的直线交椭圆两点 是椭圆上位于直线两侧的两点.若直线过点,且求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的中心在原点,焦点在x轴上,离心率 .已知点 到这个椭圆上的点的最远距离为 ,求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为(

A.117
B.118
C.118.5
D.119.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求的单调区间;

(2)若的图象与轴交于两点,起,求的取值范围;

(3)令 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x+1)的定义域为[0,1],则函数f(2x﹣2)的定义域为(
A.[log23,2]
B.[0,1]
C.
D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一个动点,∠CPB=α,∠DPA=β. (Ⅰ)当 最小时,求tan∠DPC的值;
(Ⅱ)当∠DPC=β时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,试判断函数的零点个数;

(2)若函数上为增函数,求整数的最大值,(可能要用的数据: ).

查看答案和解析>>

同步练习册答案