精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$.
(1)求f-1(x)的解析式;
(2)求使f-1(x)>0成立的x的取值范围.

分析 (1)由函数的解析式求出自变量,再把自变量和函数交换位置,即得反函数的解析式,
(2)需要分类讨论,当0<a<1时,得到0<$\frac{1+x}{1-x}$<1,当a>1时,得到$\frac{1+x}{1-x}$>1,解得即可.

解答 解:(1)y=$\frac{{a}^{x}-1}{{a}^{x}+1}$=1-$\frac{2}{{a}^{x}+1}$,
∴ax+1=$\frac{2}{1-y}$
∴ax=$\frac{2}{1-y}$-1=$\frac{1+y}{1-y}$,
∴x=loga($\frac{1+y}{1-y}$),
∴f-1(x)=loga($\frac{1+x}{1-x}$),-1<x<1,
(2)f-1(x)>0,
∴loga($\frac{1+x}{1-x}$)>0=loga1,
当0<a<1时,
∴0<$\frac{1+x}{1-x}$<1,
解得-1<x<0,
当a>1时,
$\frac{1+x}{1-x}$>1,
解得0<x<1,
综上所述,当0<a<1时,x的范围为(-1,0),
当a>1时,x的范围为(0,1).

点评 本题考查反函数,以及对数函数的单调性,求出反函数,是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x,则f(-$\frac{5}{2}$)=(  )
A.-$\frac{1}{2}$B.-$\sqrt{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\frac{sin2x}{2cosx}$(1+tanxtan$\frac{x}{2}$)=2,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-1,g(x)=-(x-2)2+m,若存在a,b∈[0,3],使得f(a)>g(b)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(9,12),$\overrightarrow{n}$=(7,1)且$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,求向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的方程kx2+$\frac{1}{2}$kx+k-2=0有两个实根,其中一根在(0,1)之间,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\overrightarrow{OA}$=(3,2),$\overrightarrow{OB}$=(-4,y),并且$\overrightarrow{OB}$⊥$\overrightarrow{OA}$,则|$\overrightarrow{OB}$|=(  )
A.$\sqrt{13}$B.4$\sqrt{13}$C.2$\sqrt{13}$D.2$\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,a1=$\frac{1}{2}$,Sn为数列|an|的前n项和,且Sn与$\frac{1}{{a}_{n}}$的一个等比中项为n(n∈N*),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{1-x,x>0}\end{array}\right.$,若f(lga)<f[lg(2a-1)],则实数a的取值范围是($\frac{1}{2}$,1).

查看答案和解析>>

同步练习册答案