【题目】已知左焦点为F(﹣1,0)的椭圆过点E(1, ).过点P(1,1)分别作斜率为k1 , k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
【答案】
(1)解:由题意c=1,且右焦点F′(1,0)
∴2a=EF+EF′= ,b2=a2﹣c2=2
∴所求椭圆方程为
(2)解:设A(x1,y1),B(x2,y2),则
①, ②
②﹣①,可得k1= =﹣ =﹣
(3)证明:由题意,k1≠k2,
设M(xM,yM),直线AB的方程为y﹣1=k1(x﹣1),即y=k1x+k2,
代入椭圆方程并化简得( )x2+6k1k2x+ =0
∴ ,
同理, ,
当k1k2≠0时,直线MN的斜率k= =
直线MN的方程为y﹣ = (x﹣ )
即
此时直线过定点(0,﹣ )
当k1k2=0时,直线MN即为y轴,此时亦过点(0,﹣ )
综上,直线MN恒过定点,且坐标为(0,﹣ )
【解析】(1)利用椭圆的定义求出椭圆的标准方程;(2)设A,B的坐标,利用点差法确定k1的值;(3)求出直线MN的方程,利用根与系数的关系以及k1+k2=1探究直线过哪个定点.
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈[ ,2]时,函数f(x)=x+ > 恒成立.如果“p或q”为真命题,“p且q”为假命题,则c的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(, 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程,并讨论两曲线公共点的个数;
(2)若,求由两曲线与交点围成的四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )
A.f(x)=x
B.f(x)=x3
C.f(x)=( )x
D.f(x)=3x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意实数a,b定义运算“⊙”:a⊙b= 设f(x)=2x+1⊙(1﹣x),若函数f(x)与函数g(x)=x2﹣6x在区间(m,m+1)上均为减函数,且m∈{﹣1,0,1,3},则m的值为( )
A.0
B.﹣1或0
C.0或1
D.0或1或3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com