精英家教网 > 高中数学 > 题目详情
已知二次函数h(x)与x轴的两交点为(-2,0),(3,0),且h(0)=-3,求h(x).
分析:由题意可设二次函数的解析式h(x)=a(x-3)(x+2),把h(0)=-3代入可求a的值,从而求h(x)
解答:解:由题意可设二次函数的解析式h(x)=a(x-3)(x+2)
∵h(0)=-3,
a=
1
2

h(x)=
1
2
(x+2)(x-3)
点评:本题主要考查了利用待定系数法求二次函数的解析式及二次函数解析式的两根式.二次函数的表达式有三种①一般式:y=ax2+bx+c ②两根式:y=a(x-x1)(x-x2) ③定点式:y=a(x-h)2+k
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x).
(1)求函数f(x)在x=3处的切线斜率;
(2)若函数f(x)在区间(1,m+
12
)
上是单调函数,求实数m的取值范围;
(3)若函数y=-x,x∈(0,6]的图象总在函数y=f(x)图象的上方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数h(x)=ax2+bx+c(c>0),其导函数y=h′(x)的图象如图所示,f(x)=lnx-h(x).
(1)求函数f(x)在x=1处的切线斜率;
(2)若函数f(x)在区间(
1
2
,m+
1
4
)上是单调函数,求实数m的取值范围;
(3)若函数y=2x-ln x(x∈[1,4])的图象总在函数y=f(x)的图象的上方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•达州一模)已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x).
(I)求函数f(x)在x=3处的切线斜率;
(Ⅱ)若函数f(x)在区间(m,m+
12
)上是单调函数,求实数m的取值范围;
(Ⅲ)若对任意k∈[-1,1],函数y=kx,x∈(0,6]的图象总在函数y=f(x)图象的上方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(第三、四层次学校的学生做次题)
已知二次函数h(x)=ax2+bx+c(c>0),其导函数y=h′(x)的图象如下,且f(x)=lnx-h(x).
(1)求a,b的值;
(2)若函数f(x)在(
1
2
,m+
1
4
)
上是单调递减函数,求实数m的取值范围;
(3)若函数y=2x-lnx(x∈[1,4])的图象总在函数y=f(x)的图象的上方,求c的取值范围.

查看答案和解析>>

同步练习册答案