ÒÑÖªº¯Êýf£¨x£©=x3+ax2+bx£¬ÇÒf¡ä£¨-1£©=0¡£
£¨1£©ÊÔÓú¬aµÄ´úÊýʽ±íʾb£¬²¢Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Áîa=-1£¬É躯Êýf£¨x£©ÔÚx1£¬x2£¨x1£¼x2£©´¦È¡µÃ¼«Öµ£¬¼ÇµãM £¨x1£¬f£¨x1£©£©£¬N£¨x2£¬f£¨x2£©£©£¬P£¨m£¬f£¨m£©£©£¬x1£¼m£¼x2£¬Çë×Ðϸ¹Û²ìÇúÏßf£¨x£©ÔÚµãP´¦µÄÇÐÏßÓëÏ߶ÎMPµÄλÖñ仯Ç÷ÊÆ£¬²¢½âÊÍÒÔÏÂÎÊÌ⣺
£¨i£©Èô¶ÔÈÎÒâµÄt¡Ê£¨x1£¬x2£©£¬Ï߶ÎMPÓëÇúÏßf£¨x£©¾ùÓÐÒìÓÚM£¬PµÄ¹«¹²µã£¬ÊÔÈ·¶¨tµÄ×îСֵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨ii£©Èô´æÔÚµãQ£¨n£¬f£¨n£©£©£¬x¡Ün£¼m£¬Ê¹µÃÏ߶ÎPQÓëÇúÏßf£¨x£©ÓÐÒìÓÚP¡¢QµÄ¹«¹²µã£¬ÇëÖ±½Óд³ömµÄÈ¡Öµ·¶Î§£¨²»±Ø¸ø³öÇó½â¹ý³Ì£©¡£

½â£º£¨1£©ÒÀÌâÒ⣬µÃ
ÓɵÃ
´Ó¶ø
¹Ê
ÁîµÃ»ò
¢Ùµ±a>1ʱ£¬
µ±x±ä»¯Ê±£¬ÓëµÄ±ä»¯Çé¿öÈçÏÂ±í£º

Óɴ˵㬺¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪºÍ£¬µ¥µ÷¼õÇø¼äΪ¡£
¢Úµ±Ê±£¬£¬´ËʱÓкã³ÉÁ¢£¬ÇÒ½öÔÚ´¦£¬
¹Êº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪR£»
¢Ûµ±Ê±£¬£¬Í¬Àí¿ÉµÃ£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪºÍ£¬
µ¥µ÷¼õÇø¼äΪ
×ÛÉÏ£ºµ±Ê±£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪºÍ£¬µ¥µ÷¼õÇø¼äΪ£»
µ±Ê±£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪR£»
µ±Ê±£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪºÍ£¬µ¥µ÷¼õÇø¼äΪ¡£
£¨2£©£¨i£©ÓɵÃ
ÁîµÃ
ÓÉ£¨1£©µÃf£¨x£©ÔöÇø¼äΪºÍ£¬µ¥µ÷¼õÇø¼äΪ£¬
ËùÒÔº¯Êýf£¨x£©ÔÚ´¦È¡µÃ¼«Öµ£¬
¹ÊM£¨£©£¬N£¨£©¡£
¹Û²ìµÄͼÏó£¬ÓÐÈçÏÂÏÖÏó£º
¢Ùµ±m´Ó-1£¨²»º¬-1£©±ä»¯µ½3ʱ£¬Ï߶ÎMPµÄбÂÊÓëÇúÏßf£¨x£©ÔÚµãP´¦ÇÐÏßµÄбÂÊÖ®²îKmp-µÄÖµÓÉÕýÁ¬Ðø±äΪ¸º¡£
¢ÚÏ߶ÎMPÓëÇúÏßÊÇ·ñÓÐÒìÓÚH£¬PµÄ¹«¹²µãÓëKmp-µÄmÕý¸ºÓÐ×ÅÃÜÇеĹØÁª£»
¢ÛKmp-=0¶ÔÓ¦µÄλÖÿÉÄÜÊÇÁÙ½çµã£¬¹ÊÍƲ⣺Âú×ãKmp-µÄm¾ÍÊÇËùÇóµÄt×îСֵ¡£
ÏÂÃæ¸ø³öÖ¤Ã÷²¢È·¶¨µÄt×îСֵ
ÇúÏßf£¨x£©Ôڵ㴦µÄÇÐÏßбÂÊ

¶ÎMPµÄбÂÊKmp
µ±Kmp-=0ʱ£¬½âµÃ
Ö±ÏßMPµÄ·½³ÌΪ
Áî
µ±Ê±£¬ÔÚÉÏÖ»ÓÐÒ»¸öÁãµã£¬
¿ÉÅжϺ¯Êýf£¨x£©ÔÚÉϵ¥µ÷µÝÔö£¬ÔÚÉϵ¥µ÷µÝ¼õ£¬
ÓÖ£¬
ËùÒÔg£¨x£©ÔÚÉÏûÓÐÁãµã£¬
¼´Ï߶ÎMPÓëÇúÏßf£¨x£©Ã»ÓÐÒìÓÚM£¬PµÄ¹«¹²µã¡£
µ±Ê±£¬£¬
ËùÒÔ´æÔÚʹµÃ
¼´µ±Ê±£¬MPÓëÇúÏßf£¨x£©ÓÐÒìÓÚM£¬PµÄ¹«¹²µã
×ÛÉÏ£¬tµÄ×îСֵΪ2¡£
£¨ii£©ÀàËÆ£¨i£©ÓÚÖеĹ۲죬¿ÉµÃmµÄÈ¡Öµ·¶Î§Îª¡£

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A¡¢f(x)=2sin(¦Ðx+
¦Ð
6
)(x¡ÊR)
B¡¢f(x)=2sin(2¦Ðx+
¦Ð
6
)(x¡ÊR)
C¡¢f(x)=2sin(¦Ðx+
¦Ð
3
)(x¡ÊR)
D¡¢f(x)=2sin(2¦Ðx+
¦Ð
3
)(x¡ÊR)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһģ£©ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉîÛÚһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸